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Local linear stability is often invoked in computational aeroacoustics to predict Mach wave radiation,
or to prescribe inflow conditions in order to drive turbulent transition in large eddy simulations. In
this work, the governing equations are reformulated for the non-oscillatory part of eigenfunctions.
Boundary conditions can thus be explicitly enforced and moreover, the numerical cost is drastically
reduced regardless of the method chosen to solve this problem. An efficient method based on a matrix
formulation is proposed in this study. One single small collocation domain is indeed used even for
computing the stability of supersonic flows.

1 Introduction

The linear stability theory is widely used in
computational aeroacoustics. To name a few examples,
Mach wave radiation can be accurately described from
small flow perturbations growing in space [1, 2], as
shown in the reviews by Tam [3] and Morris [4] or
investigated by Oertel et al. [5]. Linear parabolised
stability equations require an initialisation often
provided by a local solution [6]. Generation of
unsteady inflow conditions built on instability waves
can be used to drive the transition towards turbulence
in large eddy simulation, as performed by Keiderling
et al. [7].

Apart from a small number of particular cases, the
linear stability eigenvalue problem for a given base
flow must be solved numerically. There are basically
two main classes of numerical methods [4] : shooting
techniques and global matrix methods. In the case of
supersonic jet flows, and in the framework of a spatial
analysis, a two-domain shooting method is commonly
preferred [8, 9, 10, 11, 12, 13]. The numerical algorithm
appears to be of easier implementation and generally
provides the most accurate results. One of the main
difficulty is represented by the highly oscillatory
behaviour of the eigenfunctions and by the widening
of their support as the Mach number increases.

In the present study, a new approach is proposed.
The equation governing the local stability problem
is reformulated to remove the oscillatory part of
the eigenfunctions. This leads to a less demanding
numerical problem and moreover, acoustic radiation
conditions for Mach waves can be explicitly taken into
account.

This paper is organised as follows. First, a brief
introduction to the stability problem is presented in
section 2. The numerical procedure is then explained
in section 3. Some numerical results are shown in
section 4 and concluding remarks are finally given. A
more detailed analysis of the stability of high speed
jets can be found in [14].

2 Linear stability analysis

The inviscid linear stability problem for a
two-dimensional jet is considered. The jet flow is
represented by the superposition of a known parallel
base flow ρ̄ = ρ̄(y), ū = ū(y)ex, p̄ = 1/(γM2

j ) and a

small perturbation (ρ′, u′, p′), where (ρ, u, p) are the
density, the velocity and the pressure. All the variables
are made non-dimensional using the nominal jet
parameters, namely the half-width b⋆, the velocity
u⋆

j , the density ρ⋆j and the pressure p⋆j . Thanks to the

homogeneity in the base flow direction x and in time
of the partial differential system for the unknowns
(ρ′, u′, p′), all the physical quantities are sought in the
form of normal modes

q′(x, y, t) = Re
{

q̂′(y)ei(kx−ωt)
}

(1)

where the wave number k and the angular frequency ω
are generally taken complex. With some mathematical
manipulations, the Euler partial differential system
can be reduced to a single equation for the
pressure amplitude p̂′, known as the generalized
or compressible Rayleigh equation [15],

F
(

p̂′
)

≡ d2 p̂′

dy2
−

[

1

ρ̄

dρ̄

dy
+

2k

kū − ω

dū

dy

]

dp̂′

dy
−

−
[

k2 − M2
j ρ̄(kū − ω)2

]

p̂′ = 0 (2)

where Mj denotes the jet Mach number. Spatially
growing perturbations are considered here. Disturbances
are periodic in time with ω taken real and positive,
and one seeks the complex eigenvalues k = kr + iki

and the corresponding eigenfunctions p̂′. According
to expression (1), a mode is thus unstable if ki < 0.
The appropriate boundary conditions are obtained by
solving the limiting form of Rayleigh’s equation (2) as
y → ±∞,

d2 p̂′

dy2
− β2 p̂′ = 0 (3)

where
β =

√

k2 − M2
j ρ∞(ku∞ − ω)2 (4)

and ρ∞ and u∞ represent the density and velocity of
the uniform free stream. The branches of the complex
eigenvalue β are selected to satisfy the causality
principle and to ensure that the disturbance field
decreases as y → ±∞. Consequently, the asymptotic
behaviour of the pressure p̂′ is given by p̂′ ∝ e∓βy as
y → ±∞, with the choice arg(β) ∈]− π/2, π/2[. This
ensures that the disturbance field decays to infinity
[4].

Only the discrete part of the eigenvalue spectrum
is considered in this work [16]. It consists of two
families of waves [17, 18]. The continuation of Kelvin-
Helmholtz instability waves or vortical modes into
the compressible regime and the so-called acoustic
modes [19, 20, 17], which are obviously removed
in the classical incompressible form of the Rayleigh
equation. Following the terminology introduced
by Luo & Sandham [13], acoustic perturbations
are observed when Ms ≡ Mj|1 − vϕ| > 1, where
vϕ = ω/kr is the phase velocity in the x direction.
According to Tam & Hu [17], these modes are also
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Figure 1 – Sketch of Mach wave fronts radiated by a
sinuous instability wave, see Eq. (5).

the most unstable waves at high enough Mach
numbers [18]. Both vortical and acoustic modes may
radiate in the far field when their phase velocity is
supersonic relative to the free stream. For a free jet
with u∞ = 0 for simplicity, this condition is satisfied
when Mr ≡ |vϕ/c∞| = |ρ1/2

∞ Mjvϕ| > 1. The radiation
directivity can be determined by examinating the
expression of the eigenfunction of the pressure for
y → +∞

p′(x, y, t) ∝ e−kix−βryei(krx−βiy−ωt) (5)

It can thus be observed that a Mach wave radiation
is generated in the angular direction θ = atan(−βi/kr)
with respect to the downstream direction [3], as shown
in figure 1.

As an illustration, the vortex-sheet model of a plane
jet is briefly recalled. The base flow is given by,

{

ū(y) = 1, ρ̄(y) = 1 if y ∈]− 1, 1[

ū(y) = 0, ρ̄(y) = ρ∞ otherwise
(6)

Symmetric and antisymmetric modes about the jet axis
are solutions of the inviscid stability problem, and the
two dispersion relations Ds(Mj, ω, k) and Da(Mj, ω, k)
can be analytically derived. The spectrum of the
symmetric dispersion relation is shown in figure 2 for
the case of an isothermal supersonic jet with ω = 0.5,
ρ∞ = 1 and Mj = 3. This spectrum is symmetric about
the kr axis since the generalized Rayleigh equation
is self-adjoint. The Kelvin-Helmholtz mode as well
as the first acoustic supersonic mode are unstable,
whereas the other higher acoustic modes are neutral
perturbations. The dashed line indicates that the phase
velocity is sonic outside of the jet, and modes on the
left on this line are thus radiating modes. The dashed -
dotted line represents the relation kr = ωMj/(Mj − 1),
and supersonic acoustic modes can only exist on the
right of this line. This criterion allows to separate
the continuation of the Kelvin-Helmholtz mode in
compressible regime from acoustic modes in this
case. The eigenfunction p̂′ can be also analytically
determined. It is given by

p̂′(y) =

{

cosh(β1y) y ∈]0, 1[

cosh(β1)e
β(1−y) y ∈]1,+∞[

(7)

where

β1 =
√

k2 − M2
j (k − ω)2 β =

√

k2 − M2
j ρ∞ω2
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Figure 2 – Symmetric modes of the vortex sheet
model for the case ω = 0.5, ρ∞ = 1 and Mj = 3, +

Kelvin - Helmholtz symmetric mode, � first acoustic
mode, higher acoustic modes,

kr = Mjω/(Mj − 1), kr = ρ1/2
∞ Mjω.
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Figure 3 – Analytical eigenfunction (7) of the
symmetric Kelvin - Helmholtz mode for the case

ω = 0.5, ρ∞ = 1 and Mj = 3.

This oscillating function p̂ is plotted in Figure 3. It
has a very large support, with a transverse distance
of about 150 times the jet width. This is due to the
fact that for radiating modes, the term e−βy does not
decay exponentially fast in the free stream unlike non-
radiating unstable modes.

3 The solution technique

Apart from a small number of particular cases,
the generalized Rayleigh equation (2) must be
solved numerically. Early calculations on the stability
of parallel flows have been made through shooting
methods whereas, in recent years, also matrix methods
[23] have been successfully applied to hydrodynamic
stability problems. Shooting methods are best suited
to obtain a single eigenvalue of the spectrum, and
requires an initial guess. On the contrary, matrix
methods can provide an approximation to all the
eigenvalues without an initial guess. In this case, a
numerical scheme allows to transform the Rayleigh
equation into an algebraic polynomial eigenvalue
problem [25, 26, 27, 16, 28]. As discretization
procedure, the pseudospectral collocation method
is often employed. The unknown function p̂′ is
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approximated by a linear combination of (N + 2)
known, but arbitrarily chosen, basis functions φi(y),

p̂′(y) ≈ p̂′N+2(y) ≡
N+2

∑
i=1

aiφi(y)

The (N + 2) unknown coefficients ai are calculated
by requiring that F ( p̂′N+2) vanishes at N collocation

points yn, F
[

p̂′N+2(yn)
]

= 0, and by imposing the
two boundary conditions associated with (2). For a
given ω and Mj, this leads to an algebraic polynomial
eigenvalue problem

[

A0 + kA1 + k2A2 + k3A3

]

a = 0 a = {ai} (8)

where A0, A1, A2 and A3 are (N + 2) × (N + 2)
matrices [14]. A complete review of different
approaches to compute the eigenvalues of 8 can
be found in Bridges & Morris [24]. Using the
companion matrix method [24, 25], equation 8 is
easily transformed in a 3(N + 2) × 3(N + 2) linear
eigenvalue problem of the form Pa = kQa, which can
be solved through a standard QZ algorithm.

In this work, the spatial modes of a supersonic
jet are examined. As the Mach number increases, the
eigenfunctions p̂′ become more and more oscillating
with a larger support than in the incompressible
case, as illustrated with the vortex sheet model in
figure 3. Therefore, the number of collocation points
needed to accurately resolve these modes rapidly
grows as the Mach number exceed the value of about
Mj = 2. In other words, computing the spatial modes

(ω, k, p̂′) through the above procedure turns out to be
very expensive for Mj ≥ 2. Besides, when using the
collocation method, it is generally difficult to enforce
the boundary conditions p̂′(y) ∝ e∓βy as y → ±∞ so
that, in practice, one often imposes the condition that
the derivative dp̂′/dy vanishes at infinity.

To overcome these problems, a new formulation of
the generalized Rayleigh equation is proposed. As a
starting point, it is observed that the eigenfunctions p̂′

deviate significantly from their asymptotic behaviour
e∓βy only in the inner region of the jet. Furthermore,
due to the symmetry of a jet about the axis y = 0, the
generalized Rayleigh equation admits symmetric and
anti-symmetric modes, so that it can be solved in the
reduced interval 0 ≤ y ≤ ∞ by enforcing appropriate
boundary conditions at y = 0. Let us define a new
function p̃ such that,

p̂′(y) = p̃(y)e−βy (9)

This function p̃ varies only in the inner part of the
jet and rapidly tends to a constant value outside
this region. By substituting (9) in equation (2), it is
straightforward to find the differential equation for
p̃(y),

d2 p̃(y)

dy2
+ g1

dp̃(y)

dy
+ g2 p̃(y) = 0 (10)

where



































g1(y; ū, ρ̄, Mj, k, ω) = −1

ρ̄

dρ̄

dy
− 2k

kū − ω

dū

dy
− 2β

g2(y; ū, ρ̄, Mj, k, ω) = β

(

1

ρ̄

dρ̄

dy
+

2k

kū − ω

dū

dy

)

+

+ β2 − k2 + M2
j ρ̄(kū − ω)2

Equation (10) is to be solved with the following
boundary condition for y → ∞,

lim
y→∞

dp̃(y)

dy
= 0 (11)

completed by

dp̂′(y)
dy

∣

∣

∣

∣

y=0

=
dp̃(y)

dy

∣

∣

∣

∣

y=0

− β p̃(y = 0) = 0 (12)

for symmetric modes, and by

p̂′(y = 0) = p̃(y = 0) = 0 (13)

for antisymmetric modes. The discretization of
this problem remarkably reduces the number of
collocation points needed to accurately resolve the
eigenfunctions p̃(y) and also simplifies the application
of boundary conditions.

In the present study, the linear stability problem
is solved in a finite domain 0 ≤ y ≤ y∞, where y∞ is
taken large enough to consider p̃ constant. In addition,
the function p̃ is expanded as a sum of Lagrange
polynomials based on the Gauss - Lobatto points.
A transformation from the computational domain
−1 ≤ ξ ≤ 1 to the physical domain 0 ≤ y ≤ y∞ is thus
introduced through the following mapping,

y =
L1(1 + ξ)

L2 − ξ
(14)

where the two stretching coefficients L1 and L2 are
given by [28]

L1 =
yly∞

y∞ − 2yl
L2 = 1 +

2L1

y∞

This coordinate transformation clusters grid points
near the boundary y = 0 and distributes half of them
in the interval 0 ≤ y ≤ yl .

The generalized Rayleigh equation (2) exhibits
a singularity at the locations y = yc such that
kū(yc)− ω = 0. The collocation method is particularly
sensitive to their proximity to the computational
domain. The closer the singularities are, the slower
the convergence will be, and for critical points on
the real axis, the numerical approximation does not
hold anymore. In the context of the spatial stability
analysis of this work, the singularity yc inhibits
the computation of neutral and damped modes. As
proposed by Boyd [29] and Gill & Sneddon [30], a
mapping in the complex plane can be introduced
to bypass the singularities. The new contour must
pass below the real axis when dū(y)/dy is positive
and above the real axis when dū(y)/dy is negative

CFA 2014 Poitiers22-25 Avril 2014, Poitiers

1780



ω k ref.[31] k present Error

0.1 0.270462− 0.206506i 0.270462− 0.206510i ≈ 10−6

0.8 1.449709− 0.134110i 1.449709− 0.134109i < 10−6

1.2 1.871369− 0.029338i 1.871369− 0.029340i ≈ 10−6

1.3̄ 2.000000− 0.000000i 2.000000− 0.000000i < 10−6

Table 1 – Incompressible stability of the Bickley jet : wavenumber k as a function of the frequency ω for the
anti-symmetric mode.

ω k ref[31] k present Error

0.2 0.241420− 0.043023i 0.241420− 0.043023i < 10−6

0.6 0.901124− 0.026220i 0.901124− 0.026220i < 10−6

0.6̄ 1.000000− 0.000000i 1.000000− 0.000000i < 10−6

Table 2 – Incompressible stability of the Bicklet jet : wavenumber k as a function of the frequency ω for the
symmetric mode.

[29, 30, 4]. In this work, the following mapping is
chosen

z = y + iδ(1 − ξ2) (15)

where δ is a real factor controlling the distance from
the real axis. In practice, one could chose δ so that
the distance of the new contour from the critical
point is sufficient to guarantee the convergence of the
algorithm, but it is also necessary to pay attention
to other singularities eventually induced by the base
flow.

Equation (10) can be recast in the form an a
nonlinear eigenvalue problem

(m0 + km1 + k2m2 + k3m3 + βkm4 + βm5) p̃ = 0

where the mi’s represent differential operators. This
equation is transformed into an algebraic problem by
replacing the derivatives of p̃ with the differentiation
matrices with respect to the variable z, and the
functions ū and ρ̄ with diagonal matrices whose
terms represents their values at the collocation points.
One finally finds a non linear eigenvalue problem
M(k, ω, Mj)p̃ = 0 of the form

M(k, ω, Mj) =
3

∑
i=0

kiMi(ω, Mj) + βkM4(ω, Mj) +

+ βM5(ω, Mj) (16)

Boundary conditions are enforced by replacing the
first and last lines of the system with equations (11),
and (12) or (13). The present eigenvalue problem is
nonlinear and non polynomial in k, which does not
allow the use of a linearized form [25, 16, 27, 26, 4, 28].
An iterative procedure must be used. Here, the
new formulation of the generalized Rayleigh
equation (16) is solved through the method of
successive linearization proposed by Ruhe [?]. Starting

with an approximation k(0) of k, a correction h(0) to

k(0) is sought to satisfy M(k(0) + h(0))p̃ = 0. By using
Taylor’s formula, one can write

M(k(0) + h(0))p̃ ≃
[

M(k(0)) + h(0)M′(k(0))
]

p̃

where the symbol ′ indicates the derivative with
respect to k. Finally, the expression

[

M(k(0)) + h(0)M′(k(0))
]

p̃ = 0

represents a generalized linear eigenvalue problem

in the unknown h(0) and can be solved through a
standard QZ algorithm. Due to the truncation of the

series, the correction h(0) is however not exact, and
a sequence is then built where h(n) is chosen as the
absolutely smallest eigenvalue. The convergence is
quadratic and at the end, for a relative error less than
ǫ = 10−6, the initial non linear system M (k) p̃ = 0
becomes equivalent to the following linear eigenvalue
problem

M(k(n))p̃ = −h(n)M′(k(n))p̃

Thus, the sought eigenfunction corresponds to the
one associated with the absolutely smallest eigenvalue

h(n). In summary, for ω and Mj, application of this
algorithm allows to find only one eigenvalue k, the
closest to a certain initial guess.

4 Results

The numerical approach presented in the previous
section is first applied to an academic incompressible
case, and our numerical results are compared to the
calculations by Betchov & Criminale [31]. The velocity

profile of the Bickley jet, ū(y) = 1/ cosh2(y), has two

critical points yc = ± cosh−1(
√

3/2) corresponding
to the two inflexion points. Consequently, two
neutral modes can be found, the symmetric mode
(ω, k) = (2/3, 1), and the antisymmetric mode
(ω, k) = (4/3, 2). The present calculations are
obtained with N = 200 collocation points, and with
the parameters L1 = 6, L2 = 1.001 and δ = 1 for the
contour (15). Our results as well as those of Betchov
& Criminale [31] are listed in Tables 1 and 2. The
relative error is always less than or equal to 10−6.
The eigenvalues have also been calculated without
using the complex mapping (δ = 0). For frequencies
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Figure 4 – Kelvin - Helmholtz symmetric mode : eigenfunctions p̃ and p̂′ for δθ = 1/8, T∞ = 1, Mj = 3 and
ω = 0.2.

ω much lower than the neutral one, the relative error
has been found to be lower than 10−6. In this case,
the singularities are sufficiently far from the real axis
so that one can solve the problem without using a
complex transformation. Nevertheless, a complex
mapping is required for angular frequencies near the
neutral one, for computing the neutral and damped
modes.

A detailed analysis of the jet profile

ū(y) =
1

2

{

1 + tanh

[

1

4δθ

(

1

y
− y

)]}

y > 0

for different Mach numbers can be found in [14]. Here,
a small insight into the numerical performance of the
proposed formulation is provided. All the variables
are still dimensionless. In particular, the momentum
thickness δθ

δθ =
∫ ∞

0
ū(y) [1 − ū(y)] dy

is normalized by the half width of the jet, defined as
the distance from the axis at which the velocity ū is
equal to the half of the speed on the axis. The density
profile is calculated with the the Crocco - Busemann
relation,

1

ρ̄(y)
= T∞ − (T∞ − 1) ū(y) + M2

j

γ − 1

2
[1 − ū(y)] ū(y)

where γ and T∞ represent respectively the ratio of
specific heats and the ratio between the ambient
temperature and the nominal jet temperature. Figure 4
displays the eigenfunctions p̂′ and p̃ relative to the
radiating Kelvin-Helmholtz symmetric mode for
δθ = 1/8, T∞ = 1, Mj = 3 and ω = 0.2. The support

of p̂′ is very large, 0 ≤ y ≤ 1000, whereas p̃ is
nearly constant for y > 2 since p̂′ rapidly tends to
its asymptotic form just outside the jet flow region.
The importance of the change of variable is clearly
demonstrated in this case. The calculation for p̃ has
been carried out with N = 200, L1 = 3, L2 = 1.001
and δ = 0.3. Instead, a direct computation of the
eigenfunction p̂′ would have required more than 2000
grid points.

5 Conclusion

A reformulation of the generalized Rayleigh
equation is proposed, to efficiently compute the
spatial stability of high-speed flows characterized by
radiating Kelvin-Helmholtz and supersonic acoustic
modes. The oscillating part of eigenfunctions is
removed through a change of variable, which allows
a reduced computational domain to be considered.
Radiation boundary conditions are also explicitly
enforced. To demonstrate the numerical robustness
of this approach, the stability of a two-dimensional
supersonic jet has been revisited for high Mach
numbers.
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