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Abstract— Computational Intelligence techniques have been proposed as an efficient tool for modeling and forecasting in 
recent years in various applications. In this work An Adaptative Neuro-Fuzzy Inference System (ANFIS) and artificial neural 
networks (ANN) techniques are used to predict the acoustic form function (FF) for an infinite length cylindrical shell of 
various radius ratio b/a (a: outer radius and b: inner radius). If this tube is excited by a plane acoustic perpendicularly to its 
axis, circumferential waves are generated in the shell and water/shell interface. These circumferential waves are observed in 
the spectrum of the FF. The Wigner-Ville distribution (WVD) is used as comparison tool between the calculated FF by the 
analytical method and that predicted by the neuro-fuzzy and the artificial neural networks techniques for a copper tube. During 
the application of these techniques, several configurations are evaluated for various radius ratio b/a (a: outer radius, b: inner 
radius of tube). This study shows that the neuro-fuzzy technique is able to predict the FF with a mean relative error (MRE) 
about 1.7% and that predicted by the neural network is about 3.9%. 

Keywords-—Fuzzy logic; ANFIS; ANN; acoustic scattering,  cylindrical shells; Wigner-Ville distribution. 

1 Introduction 
Different methods have been proposed for analysis of 

the circumferential waves propagating around a cylindrical 
shell which includes frequency and temporal analysis [1, 2, 
11]. The aim of this paper is to compare the form function 
predicted by ANFIS and ANN techniques with that 
obtained analytically. The Wigner-Ville time-frequency 
distribution was used as a comparison tool to check the 
validity of the use of the ANFIS network and the ANN 
models to predict the form function [1]. The time-frequency 
distribution takes into account both the time parameter and 
the frequency parameter leading to synthetic images that 
allow us to follow the evolution of the frequential content 
of a wave echo as a time function [2, 3]. Major benefits 
using ANFIS and ANN networks are excellent management 
of uncertainties, noisy data and non-linear relationships. In 
this study, the ANFIS and ANN models predict the form 
functions of tubes without the use of the analytical method 
for various radius ratio b/a. These model is able to predict 
the FF for copper tube of various radius ratio b/a between 
0.9 and 0.99. 

2 Neuro-Fuzzy Model 
Fuzzy logic is based on fuzzy set theory; it is an 

extension of Boolean logic which allows us to use the 
values between "true" and "false". In this approach the 
classical theory of binary membership in a set, is modified 
to incorporate the memberships between “0” and “1”. A 
fuzzy inference system using fuzzy IF–THEN rules is a 
way of modeling the qualitative aspects of human 
knowledge and reasoning processes without employing 
precise qualitative analysis. Basically, a fuzzy inference 
system is composed of five conceptual blocs, shown in 
Fig.1, as follows [4]: 

 
(i)  A rule base containing a number of fuzzy IF–THEN 

rules, 
(ii)    A database, which defines the membership functions 

of the fuzzy sets used in the fuzzy rules. 
(iii) A decision-making unit, which performs the 

inference operations on the rules. 
(iv) A fuzzification inference, which transforms the crisp 

inputs into degree of match with linguistic values. 
(v) A defuzzification inference, which transforms the fuzzy 

results of the inference into a crisp output.  
 
    These functional blocks are shown in Figure 1, FIS 
implements a nonlinear mapping from its input space to the 
output space. 

An adaptive network is a network structure whose 
overall input-output behavior is determined by a collection 
of modifiable parameters. Readers are referred to [5] for 

more details on adaptive networks. Jang [6] introduced a 
novel architecture and learning procedure for the FIS that 
uses a neural network learning algorithm for constructing a 
set of fuzzy if-then rules with appropriate MFs from the 
stipulated input–output pairs. This procedure of developing 
a FIS using the framework of adaptive neural networks is 
called an Adaptive Neuro-Fuzzy Inference System 
(ANFIS). 

2.1 ANFIS Architecture 
The proposed architecture of the ANFIS is depicted in 

Fig. 2(b). Selection of the FIS is the major concern when 
designing an ANFIS to model a specific target system. The 
present study uses the Sugeno fuzzy model to generate 
fuzzy rules from a set of input-output data pairs [7]; [8] 
since the conclusion of a fuzzy rule of this FIS is 
constituted by a weighted linear combination, and the 
parameters may be estimated by combination of the 
gradient descent method and the least squares estimate 
(LSE). To simplify the explanations, the fuzzy inference 
system under consideration is assumed to have two inputs 
(x and y) and one output f. For a first order of Sugeno fuzzy 
model, a typical rule set with base fuzzy if–then rules can 
be expressed as: 

 
Rule 1: If x is A1 and y is B1, then f1=p1 x+q1 y+r1        (1) 
Rule 2: If x is A2 and y is B2, then f2=p2 x+q2 y+r2        (2) 

 
Where A1; A2 and B1; B2 are the MFs for inputs x and y; 

respectively; p1; q1; r1 and p2; q2; r2 are the parameters of 
the output function. Fig. 2(a) illustrates the fuzzy reasoning 
mechanism for this Sugeno model to derive an output 
function (f) from a given input vector [x, y]. 

The corresponding equivalent ANFIS architecture is 
presented in Figure 2 (b), where nodes of the same layer 
have similar functions. The functioning of the ANFIS is as 
follows: 

 
 Layer 1: Each node in this layer generates 

membership grades of an input variable. The node 
output  1

iOP is defined by: 

21 1( ) for  i=1,2 or ( )for i=3,4
i i

i i
A BOP x OP x  (3) 

Where x (or y) is the input to the node. Ai (or Bi-2) is a 
fuzzy set associated with this node, characterized by the 
shape of the MFs in this node and can be any appropriate 
functions that are continuous and piecewise differentiable 
such as generalized bell shaped functions. 

Assuming a generalized bell function as the MF, the output 

1
iOP   can be computed as: 
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FIGURE 1- Fuzzy Inference System with crisp output. 
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Where {ai, bi, ci} is the parameter set that changes the 
shapes of the MF with maximum equal to 1 and minimum 
equal to 0. 

Layer 2: Every node in this layer multiplies the incoming 
signals, denoted as  , and the output 2

iOP that represents 
the firing strength of a rule is computed as: 

2 ( ) ( ), 1,2.
i ii i A BOP x y i  (5) 

Layer 3: The ith node of this layer, labeled as N; computes 
the normalized firing strengths as: 

3

1 2

, 1,2.i
i iOP i              (6) 

Layer 4: Node i in this layer computes the contribution of 
the ith rule towards the model output, with the following 
node function: 

4 ( )i i i i i i iOP f p x q x r          (7) 

Where  is the output of layer 3 and {pi, qi, ri} is the 
parameter set. 

Layer 5: The single node in this layer computes the overall 
output of the ANFIS as: 

5
1

i i
i

i i
i

i
i

f
OP Overall output f   (8) 

 
FIGURE 2:   (a) First-order Sugeno fuzzy model (b) ANFIS 
architecture 

 

2.2 Architecture 
Fig. 3 shows a typical neural network consisted of input, 

sum function, sigmoid activation function and output. This 
typical neural network is reinforced with an advanced 
training algorithm named as Levenberg–Marquardt back-
propagation. The input values to a neuron are obtained by 
multiplying the output of the connected neuron by the 
synaptic strength of the connection between them. The 
weighted sums of the input components xi are calculated by 
using the following equation [4, 9]: 

Where (net)j is the output from neuron, wij is 
connection’s weight, b is bias weight, n is the number of 
neurons or processing elements (PE) in each layer and f is 
the activation function. 

1
( ) ( )

l
j ij i

i
net f w x b         (9) 

In this paper, the log-sigmoid used as activation 
function as follows [4, 9]: 

1( )
1 exp( ( ) )j j

j
O f net

net
     (10) 

After processing all of the layers, the activated result of 
the output layer Oj, compared with the target value yt, and 
the resulted error will be propagated backward the 
network’s weight to minimize the overall error. This 
process is usually performed by a method known as error 
back-propagation (BP) method. In this paper, Levenberg– 
Marquardt back-propagation (LMBP) algorithm is utilized 
as training algorithm instead of commonly used standard 
BP method for its robustness in computing process [10]. 
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FIGURE-3  Layout of three-layer back propagation 
neural network. 
 
3   Collection of data base 
In this study, an air-filled tube immersed in water is 

excited by a plane acoustic wave perpendicularly to its axis 

(Fig.4). The complex pressure  scatP  backscattered by the 
tube in a far field is the sum of the normal modes which 
takes into account the effects of the incident wave, the 
reflective wave {1}, surface waves in the shell {2} 
(whispering gallery waves, Rayleigh wave: equivalent to 
Lamb waves if the tube wall is thin) and an antisymmetrical 
interface Scholte A wave labelled also A0 wave {3} 
connected to the geometry of the object (Fig.5) [11]. Waves 
{2} and {3} are the circumferential waves. In our case, the 
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flexural waves A, A1 and A2 and the compression waves S0, 
S1 and S2 are observed. 
The general analytical form of the backscattered pressure 

scatP  in far field at normal incidence can be expressed as: 
 

1

0 1
01

( )1( ) exp ( ) cos( ).
( )

n
scat n

n n

DiP P i k r t n
Dk r

 (11) 

TABLE I.    Physical parameters 

 

 
FIGURE 4- The geometry used to calculate the form function 
for an elastic tube. 
 

 
FIGURE 5- Mechanisms of the echo formation ({1}: 

specular reflection, {2}: circumferential shell 
 
where   is the angular frequency, k1 is the wave-

number with respect to the wave velocity in the external 
fluid,  P0 is the amplitude of the incident plane wave, r is 
the distance of pressure measurement, Ɵ is the azimuthal 
angle (Ɵ  = 180° for the backscattering spectrum), 1( )nD  

and ( )nD  are determinants computed from the boundary 
conditions of the problem (continuity of stress and 
displacement of both interfaces), the terms of these 
determinants are given in ref 12 (in the present study, the 
normal incidence is only considered) and εn is the Neumann 
coefficient (εn =1 if n=0 and εn =2 if n 0). 

The physical parameters used in the calculation of the 
backscattered complex pressure are illustrated in Table 1. 

Usually this backscattered pressure is presented as the 
form function FF defined by the relation (2) [13]: 

scat
0

P a FF
P 2r

    (12) 

This form function is function of the reduced frequency 
x1=k1a given by: 

1
1

2 ak a
c

   (13) 

where 
2

 is the frequency of a wave in Hz. 

4  wigner-ville time frequency 
distribution 

The Wigner-Ville Distribution (WVD) takes into 
account both the time parameter and the frequency 
parameter leading to an image that allows us to follow the 
evolution of the frequency content of acoustic echoes as a 
function of time [14]. 

Among the time-frequency techniques, WVD is used for 
its interesting properties in terms of acoustic applications 
[1]. Other time-frequency methods (wavelets for example) 
would be used in our application but we had good results 
with the WVD [2]. The WVD is applied to obtain the 
dispersion curves of the group and phase velocities of 
circumferential waves propagating around a tube with 
different radius ratio [1]. The WVD can be applied to the 
backscattered time signal obtained from the computation 
and/or the experiment. This allows us to determine the 
reduced cut-off frequencies [1]. 

The WVD of time complex signal u(t) displays the 
energy distribution of this signal in the time-frequency 
plane (5). 

( , ) ( ) *( ) exp ( 2 )
2 2uW t u t u t i d           (14) 

with 
2

 the frequency and t the time of the signal, 

u*(t) is the conjugated complex time signal of u(t). 

5  Training Phase and application of 
the ANFIS and ANN networks to 
predict FF 

ANFIS and ANN networks method requires for its 
training a set of form functions calculated by the analytical 
method or obtained by experiments.  

 In this work, the dataset is constituted from the form 
functions calculated by the analytical method. This dataset 
is divided into two sets. The first training data set was used 
for training the ANFIS and ANN while the remaining 
checking data set were used for validating the identified 
model. The desired and predicted values for both training 
data and checking data are essentially the same in fig. 8 and 
11. 

 Density 
(kg/m3) 

Longitudinal 
velocity CL (m/s) 

Transversal 
velocity CT (m/s) 

cop
per 

8930 4760  2325 

Wa
ter 

1000 1470 -  

Air 1.29 334 - 
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6 Selection of the Optimal Model  
The performance of ANFIS and ANN models for 

training and testing data sets were evaluated according to 
statistical criteria such as, coefficient of correlation R, 
MAE, MRE. The selection of different models is done 
comparing the errors of the ANFIS and ANN configuration, 
calculating the MAE, the MRE and the R of the FF. The 
coefficient of correlation of the linear regression is used 
like performance measures of the model between the 
predicated and the desired output. The different error 
measures and the coefficient of correlation are given by the 
following relations: 

N
i i

ii=1
100,

C -O1MRE= .N C
              (15) 

1

1 N
i i

i
MAE C O

N
               (16) 

2

1

2

1

1

N
i i

i
N

i m
i

( C - O )
R - ,

( C - O )

             (17) 

where N is the number of data, Ci and Oi are 
respectively the desired and the predicted values. Om is the 
mean of the predicted values. 

 
7 results and discussion 
The ANFIS is trained by using randomly 50% of the 

dataset. While the remaining dataset 50% is reserved as a 
test base. The neural network is trained by using randomly 
2/3 of the dataset. While the remaining dataset 1/3 is 
reserved as a test base. The analysis is repeated several 
times. Indeed, the values of errors are measured for ANFIS 
and ANN networks architectures.  

  The best configuration is found for the ANFIS network 
with the number of membership function is fixed to 2 MF, 
so the rule number is 16.  The MRE and the MAE for the 
optimal model are respectively 2% and 2% k1a for 
b/a=0.93 (Fig.6 and 7). Figures 8, 10 show the comparison 
between the form functions predicted by the ANFIS model 
on a test database and that calculated by the analytical 
method for the radius ratios b/a = 0.93 and 0.9. (Figures 8 
and 10) shows the good agreement between the predicted 
and the calculated values of the form function.  

 The best configuration is found for the ANN network 
with two hidden layer. The MRE and the MAE for the 
optimal model are respectively 3.9% and 2.6% k1a for 
b/a=0.93 see Fig.6 and 7. 

However, the time-frequency representation of Wigner-
Ville is used as a tool of comparison to check the validity of 
the ANFIS network model because the studied signals are 
not stationary. Using a time-frequency representation can 
allow us to follow the evolution of the frequency content of 
acoustic echoes as a function of time. Figure 10 shows the 
good agreement between Wigner-Ville image of the 
predicted and the calculated form function for a copper tube 
of radius ratio b/a=0.93, 0.96. Moreover, starting from the 
Wigner-Ville image of the predicted signal, the reduced 
cut-off frequency ([k1a]c) of the tube corresponding to the 
A1 wave can be determined. Generally, the ANFIS and 
ANN networks methods can contribute to the 
comprehension and the 
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 FIGURE 6- Correlation between calculated and predicted 
values of form function on a test dataset for radius ratio (a) 
b/a=0.93. 

interpretation of the backscattered acoustic pressure by 
submerged tubes.  In inverse operating mode, the network 
model can go up to the radius ratio b/a starting from an 
unknown form function for a given material and this by 
using the parameter of membership function and synapse 
weight of the optimals models.     

The circumferential antisymmetric A1 waves propagates 
around the circumference of the tube only for frequencies 
superior to the reduced cut-off frequency [15]. The reduced 
cut-off frequency values ([k1a])c) obtained from the 
Wigner-Ville image of the test database (b/a=0.93, 0.96) 
and analytically calculated are presented in Table II.  
Starting from the operating mode direction of this optimal 
models we can make several things. In direct operating 
mode of the models optimals, one can predict the form 
functions for tubes of various radius ratio b/a and for 
various materials.  

TABLE II.  : Results of the different error measures and 
the coefficient of correlation (MRE, MAE, AND R) of 
ANN and ANFIS for a cooper tube b/a=0.93 (for exemple) 
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FIGURE 7-Correlation between calculated and predicted 
values of form function on a test dataset for radius ratio (a) 
b/a=0.96. 

TABLE III.   comparison between the reduced cut-off 
frequencies computed by eigen modes method and starting 
from the Wigner-Ville image 

Circumferential 
wave A1 

(k1a)c 
Estimated 
by PMT 

(k1a)c 
Estimated 
by ANFIS 

(k1a)c 
Estimated 
by ANN 

B/A=0.93 70.94±0.3 70.48±0.3 70.40±0.3 

b/a=0.95 99.32±0.3 99.94.0±0.3 99.98±0.3 

b/a=0.97 165.54±0.2 165.00±0.2 164.90±0.3 
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FIGURE 8- Form Function calculated by analytical 

method and form Function predicted by ANN and ANFIS 
for b/a=0.93 
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FIGURE 9- Form Function calculated by analytical 

method and form Function predicted by ANN and ANFIS 
for b/a=0.96 

 
Error 
mesures 

 
MRE 

 
MAE 

 
R 

ANN 3.9%     0.026  0.96 

ANFIS 2%     0.02  0.97 
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FIGURE 10- Comparison between the WV images for the 
form function calculated by the analytical method and 
predicted by the ANFIS and ANN methods (b/a=0.93, 
b/a=0.96) 

8 Conclusion 
      The ANFIS and the ANN approachs can be used as new 
tools for non-destructive characterization of a thin elastic 
tube. To check the credibility of these approachs, the 
distribution of Wigner-Ville was used like a tool of 
comparison between the form function FF calculated by the 
analytical method and that predicted by the ANFIS and the 
ANN techniques. 

     The reduced cut-off frequency of the anti-symetric 
wave A1 estimated from the WV images corresponding to 
the predicted form functions by the ANFIS and by the ANN 
methods shows that the ANFIS method are in good 
concordance with that computed by the eigen modes 
method. This comparison indicates that the ANFIS method 
is suitable to predict the backscattered pressure by a tube. 
Based on this comparison, we note that the adaptive neuro-
fuzzy model can provide an effective description in the 
analysis of acoustic signal backscattered by a tube 
immersed in water.  
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