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The accurate solution to the wave equation implies very high computational burdens, even when using
high-order space discretization methods. Besides, if we use explicit time discretization methods (such
as for instance the classical Leap-Frog scheme), the time step has to satisfy a CFL (Courant-Friedrichs-
Lewy) condition to ensure the stability of the scheme. The smaller the space step is, the smaller the
CFL condition and the higher the number of iterations will be. To improve the accuracy of the Leap-
Frog scheme, we may consider the modified equation technique, which allows to obtain explicit arbitrary
2p-th order scheme in time. The price to pay is p matricial multiplications at each time step when
the Leap-Frog scheme only requires one, whereas the CFL condition is multiplied by αp ≥ 1. For p=2
(fourth-order scheme), α2 = 1.7, so that the additional computational cost is small, but for higher-order
scheme the increase of the CFL condition is generally not sufficient to counterbalance the number of
additional multiplications. Recently, a technique has been proposed to optimize the coefficients αp, but
it requires more matricial multiplications. Herein, we apply the modified equation technique in an original
way, by switching the classical discretization process. Indeed, we consider first the time discretization,
thanks to the modified equation technique, before addressing the question of the space one. After this
time discretization, we have to deal with an additional p-laplacian operator which implies to consider
Cp−1 finite elements. In this work, we have chosen to discretize the second-order operator by the Interior
Penalty Discontinuous Galerkin method and we will present how we extend this method to discretize the
higher-order operators. Numerical results in 2D illustrate the performance of the 4-th order scheme.

1 Introduction

To improve the accuracy of the numerical solution of the
wave equation computed with a finite element method,
one must considerably reduce the space step. Obviously
this will result in increasing the number of unknowns
of the discrete system. Besides, the time step, which
is fixing the number of needed iterations, is linked to
the space step through the CFL (Courant-Friedrichs-
Lewy) condition. The CFL number defines an upper
bound for the time step in such a way that the smaller
the space step is, the higher the number of iterations
will be. In the three-dimensional case, the problem can
have more than ten million unknowns, which must be
evaluated at each time-iteration. However, high-order
numerical methods can be used for computing accurate
solutions with larger space and time steps. Recently,
Joly and Gilbert [2] have optimized the Modified Equa-
tion Technique (MET), which was proposed by Shubin
and Bell [4] for solving the wave equation, and it seems
to be very promising given some improvements. In this
work, we apply this technique in a new way. Normally,
most of the study devoted to the solution of the wave
equation consider first the space discretization of the
system before addressing the question of the time dis-
cretization. We intend here to invert the discretization
process by applying first the time discretization using
the MET and then to consider the space discretization.

The time discretization causes high-order operators to
appear (such as p-Laplacian) and we have therefore to
consider appropriate methods to discretize them. The
Discontinuous Galerkin Methods are well adapted to
this discretization, since they allow to consider piece-
wise discontinuous functions. In particular, using the In-
terior Penalty Discontinuous Galerkin (IPDG) method
(see for instance [6, 7, 3] for the discretization of the
Laplacian and [5] for the discretization of the Bilapla-
cian), one can enforce through the elements high-order
transmission conditions, which are adapted to the high
order operators to be discretized. The outline of this
paper is as follows. In section 1, we describe the classi-
cal application of the MET to the semi-discretized wave
equation and we recall its properties. In section 2, we
obtain high-order schemes by applying this technique di-
rectly to the continuous wave equation and we present
the numerical method we have chosen for the space dis-
cretization of the high order operators. In section 3, we
present numerical results to compare the performances
of the new technique with the ones of the classical MET.

2 The Modified Equation Tech-
nique

In this part, we briefly describe the modified equation
technique applied to the acoustic wave equation in a



bounded medium Ω ⊂ Rd, d = 1, 2, 3. For the sake of
simplicity, we impose an homogeneous Neumann bound-
ary condition on the Boundary Γ := ∂Ω but this study
can be easily extended to Dirichlet boundary conditions.
The model is then:

Find u : Ω× [0, T ] 7→ R such that :

1
µ (x)

∂2u

∂t2
− div

(
1

ρ (x)
∇u

)
= f in Ω× ]0, T ] ,

u (x, 0) = u0,
∂u

∂t
(x, 0) = u1 in Ω,

∂nu = 0 on ∂Ω.

(1)
where u stands for the displacement, µ is the compress-
ibility modulus, ρ is the density and f is the source term.
We assume here that µ and ρ are piecewise polynomial.
T denotes the final time, u0 and u1 are initial data and
n is the unit outward normal vector to ∂Ω.
A classical space discretization method, applied to (1)
leads to the linear system,

M
∂2U

∂t2
+ KU = F, (2)

where M is the mass matrix , K is the stiffness matrix,
U is the vector of unknowns and F the source vector.
In the following, we assume that the space discretiza-
tion method is such that M is easily invertible (sparse
or block-diagonal). This is the case if we consider finite
differences, a spectral element method or discontinuous
Galerkin methods.
Regularly, (2) is discretized by using a second-order
scheme like

U (t+∆t)−2U (t)+U (t−∆t)
∆t2

=
∂2U

∂t2
(t)+O

(
∆t2

)
(3)

where ∆t is the time step. Combining (2) and (3) we
obtain the well-known Leap-Frog scheme,

Un+1 − 2Un + Un−1

∆t2
= −M−1KUn + M−1Fn, (4)

where Un denotes the approximate solution of U at the
instant tn = n∆t.
Higher-order schemes can be obtained by using the mod-
ified equation technique [1, 4]. This technique relies
on higher even-order Taylor expansions of the quantity
U (t + ∆t) − 2U (t) + U (t−∆t). For instance, to ob-
tain a fourth-order scheme requires to use a fourth-order
Taylor expansion like

U (t + ∆t)− 2U (t) + U (t−∆t)
∆t2

=
∂2U

∂t2
(t)

+
∆t2

12
∂4U

∂t4
(t) + O

(
∆t4

)
.

(5)

Now (2) implies that

∂4U

∂t4
= M−1KM−1KU −M−1KM−1F + M−1 ∂2F

∂t2
.

Consequently, we obtain the explicit fourth order mod-
ified equation scheme (MES-4)

Un+1 − 2Un + Un−1

∆t2
= −M−1KUn

+
(
M−1K

)2
Un + F4

(6)

where F4 is a modified source term defined by
M−1

((
I −KM−1

)
Fn + ∂2F n

∂t2

)
. We can remark that

applying the MES-4 involves two matricial multiplica-
tions by M−1K so that the computational burden of one
iteration is respectively multiplied by two as compared
to the Leap-Frog scheme. The stability of the Leap-Frog
scheme (4) is ensured if the CFL (Courant-Friedrichs-
Lewy) condition:

∆t ≤ ∆tLF := αh, (7)

is satisfied. It involves the space step h and a constant α
depending only on the space discretization method and
on the physical coefficients.
Regarding the MES-4, the CFL condition is multiplied
by
√

3
∆t ≤ ∆tMES−4 :=

√
3αh,

according to [2]. The computational cost is thus multi-
plied by 2/

√
3 = 1.15. It is possible to increase the CFL

condition of MES-4, but according to [2], it is necessary
to increase the number of multiplications by the matrix
M−1K at each time-step.

3 The new scheme

In this section we present a new fourth-order scheme.
Let us mention that higher order schemes can be ob-
tained in the same way (see [8]).
We first perform the time discretization of (1), by ap-
plying a fourth-order Taylor expansion:

u (t + ∆t)− 2u (t) + u (t−∆t)
∆t2

=
∂2u (t)

∂t2

+
∆t2

12
∂4u (t)

∂t4
+ O

(
∆t4

)
.

(8)

Since u is solution to the wave equation (1), we can
rewrite the fourth order partial derivative of u with re-
spect to the time as

∂4u

∂t4
= µdiv

(
1
ρ
∇

[
µdiv

(
1
ρ
∇u

)])
+µ

∂2f

∂t2
+ µdiv

(
1
ρ
∇ (µf)

)
.

(9)

Finally, we obtain the semi-discretized scheme

1
µ

un+1 − 2un + un−1

∆t2
= div

(
1
ρ
∇un

)
+

∆t2

12
div

(
1
ρ
∇

[
µdiv

(
1
ρ
∇un

)])
+ f4,

(10)

with f4 = f +
∆t2

12

(
∂2f

∂t2
+ div

(
1
ρ
∇ (µf)

))
.

For the space discretization, we refer to [8] where
a finite element approximation has been proposed. It
is based on an Interior Penalty Discontinuous Galerkin
(IPDG) method [6, 7, 3] for which we have defined suit-
able transmission conditions. We consider a partition
Th of Ω composed of triangles or hexahedra K and we
suppose that the functions ρ and µ are constant by ele-
ment. We seek an approximation of the solution in the
space:

V h
l :=

{
v ∈ L2 (Ω) : v|K ∈ Pl (K) ,∀K ∈ Th

}
, (11)



where Pl (K) is the set of polynomials of degree ≤ l on
K. Since we have to discretize a fourth order operator,
we choose l ≥ 3 and we consider the problem:

Find un+1
h ∈ Vh such that, ∀v ∈ Vh,∑

K∈Th

∫
K

(
1
µ

un+1
h − 2un

h + un−1
h

∆t2
− f4

)
v = ah (un

h, v) .

(12)
where ah (un

h, v) = −a1h (un
h, v) + ∆t2

12 a2h (un
h, v). We

do not detail here the expression of the bilinear forms
a1h, a2h corresponding respectively to the second and
fourth order terms. Let us however mention that a1h is
obtained by the IPDG method and involves a positive
penalization parameter γ1 to ensure the coercivity of
a1h. We use the same technique for a2h and we have to
consider two positive penalization parameters γ2,1 and
γ2,2 to ensure its stability. The discretized scheme can
be rewritten as a linear system

Un+1 − 2Un + Un−1

∆t2
= M−1

[(
K1 +

∆t2

12
K2

)
Un + Fn

]
(13)

where M is the mass matrix associated to the L2 scalar
product, K1 and K2 are the two stiffness matrices re-
spectively associated to a1h and a2h and Fn is the cor-
responding source vector.

4 Numerical analysis

Let us now compare the computational cost of this
scheme (that we denote by ∆2-scheme) to the one of the
Leap-Frog scheme and of the MES-4. We suppose here
that the matrix K in (2) has been obtained by using an
IPDG method of order p, so that (K)ij = a1h (ϕi, ϕj) =
(K1)ij .

In practice we compute K∗ := K1 + ∆t2

12 K2, so that
we have only one matricial multiplication by M−1K∗

to perform at each iteration. Moreover, it is clear that
a1h (ϕi, ϕj) = a2h (ϕi, ϕj) = 0, as soon as the degrees of
freedom i and j are respectively associated to two ele-
ments which do not share a common edge. This means
that M−1K1 = M−1K, M−1K2 and M−1K∗ have the
same number of non-zero elements and that the cost of
one multiplication by M−1K∗ is the same as the cost of
one multiplication by M−1K. It is therefore clear that
the cost of one iteration of the ∆2-scheme is the same
as the cost of one iteration of the Leap-Frog scheme and
is the half of the cost of one iteration of MES-4.

The global cost of these schemes is the cost of one
iteration multiplied by the number of iterations, which
is imposed by the CFL condition. We did not obtain an
explicit CFL condition for the ∆2-scheme, but the nu-
merical experiments we have carried out (see section 5)
show that this condition is a little bit higher than the
condition of the Leap-Frog scheme, so that the global
cost of the ∆2-scheme is equivalent to the one of the
Leap-Frog scheme. Moreover, since the CFL condition
of MES-4 is about 1.73 times the condition of the Leap-
Frog scheme, we can deduce that the global cost of the
∆2-scheme is smaller than the one of MES-4.

5 Numerical Results

In this section, we consider the simulation of wave prop-
agation in a 2D two-layered media Ω = [−1, 1]2 = Ωt ∩
Ωb where Ωt = [−1, 1]× [0, 1] and Ωb = [−1, 1]× [−1, 0]
are two homogeneous layers respectively charaterized by
µ = 2, ρ = 2 and µ = 8 , ρ = 4. We consider zero-initial
conditions and a source which is a second derivative of
a Gaussian in time and a point source in space:

f = δx02λ
(
λ (t− t0)

2 − 1
)

e−λ(t−t0)
2
,

with x0 = (0, 0.5), λ = π2f2
0 , f0 = 5 and t0 = 1/f0.

In this case, we discretize the wave equation (1) with
the two following methods:

1. MES-4, based on a space discretization with P 3-
Lagrange polynomials and a penalization param-
eter of γ1 = 10. With these basis functions
and this parameter, the CFL condition of the
Leap-Frog scheme is (experimentally) ∆tLF4 =
0.058h so that the CFL of MES-4 is ∆tMES−4 =
0.058

√
3h = 0.100h.

2. The ∆2-scheme, with P 3-Lagrange basis functions
and with the penalization parameters γ1 = 10,
γ2,1 = 10 and γ2,2 = 0. The CFL condition of this
scheme is (experimentally) ∆topt = 0.061h.

Let us remark that the CFL of the ∆2-scheme is slightly
higher than the CFL of the Leap-Frog scheme ∆tLF4 .
To compare the performances of the different methods,
we compute the solution on a receiver at point x1 =
(0.25, 0.25) and we calculate the relative L2 ([0, T ] , x1)
error for different mean space steps h = 3e − 3, 1.5e −
3, 7.5e− 4 and a final time approximatively equal to 2.
The results are presented in Tab. 1 and we represent in
Fig. 1 the relative L2 error as a function of the mesh size
for the MES-4 (red line with circles) and the ∆2-scheme
(green line with squares) in log-log scale.

h MES-4 ∆2-scheme
3.0e− 3 2.5e− 2 2.3e− 2
1.5e− 3 1.2e− 3 1.1e− 3
7.5e− 4 6.6e− 5 6.5e− 5

Table 1: Relative L2 error in time at the receiver.

We can easily verify that the two methods are fourth
order approximations and give similar results. Since the
CFL of the ∆2-scheme is slightly higher than the CFL
of the Leap-Frog scheme and only require one matricial
multiplication at each iteration, that means that they
allow for high-order accuracy with a smaller cost than
the Leap-Frog scheme.

6 Conclusion

In this work, we have constructed new high-order
schemes both in time and space to solve the acoustic
wave equation. The numerical results we have presented
illustrate the fact that the computational cost of these



Figure 1: Convergence of the 4th-order schemes in 2D

schemes is the same as the one of the Leap-Frog scheme
and is therefore smaller than the one of the MES-4.
However, the CFL of the new scheme are only computed
numerically and we are now trying to determine them
analytically. This scheme seems to be very well-adapted
to p adaptivity. Indeed, if we combine the ∆2-scheme
with a mesh composed of P 1 and P 3 cells, it is clear
that a2h (φi, φj) vanishes if the degrees of freedom i and
j belong to a P 1-cells. Therefore, we infer that the
scheme will be of second order on the P 1-cells and of
fourth order on the P 3-cells. This will be the object of
a forthcoming work.
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