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Characterization of poroelastic materials with a bayesian approach
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A characterization method of poroelastic intrinsic parameters is used and compared with other direct
methods. This inverse characterization method enables to get all the parameters with a simple measure-
ment in a standing wave tube. It is based on a bayesian approach that enables to get probabilistic data
such as the maximum aposteriori value and confidence intervals on each parameter. In this approach,
it is necessary to define prior information on the parameters depending on the studied material. This
last point is very important to regularize the inverse problem of identification. In a first step, the direct
problem formulation is presented. Then, the inverse characterization is developed and applied to an
experimental case.

1 Introduction

Sound insulation of various structures with porous mate-
rials finds its interest in several industrial domains such
as building acoustics, automotive, and aeronautics. It
is therefore important, at design stage, to be able to
characterize the vibroacoustic behavior of these poroe-
lastic structures. In practice Biot’s model[1] is com-
monly used. However eight parameters are necessary to
describe the poroelastic material. Several kinds of char-
acterization, direct or not, can be used to get acous-
tical parameters [9, 5, 12] or elastic parameters of the
solid phase [7, 14, 2, 8]. However these kinds of charac-
terisation measurements require a specific experimental
device for each parameter. Besides, uncertainties ob-
tained on each measurement are sometimes very large
and lead to some difficulties to get a good comparison
of the model with standard experimental data obtained
with a standing wave tube apparatus. Finally, for par-
ticular materials like fibrous ones, some parameters like
elastic coefficients are very difficult to identify even with
direct methods. The non-linear dynamic behavior is in-
deed well known for such materials where the apparent
stiffeness depends on the strain level at which the sample
is tested [13]. On the other hand, inverse acoustic mea-
surements [6, 3, 4] as well as indirect methods [11, 10]
can also be used to adjust these parameters.

In this paper, a robust inverse method is presented.
All the parameters, acoustic and elastic, are charac-
terised with only one measurement in a standing wave
tube. The baysian theory is used to improve the effi-
ciency of the optimisation scheme to identify the param-
eters. The resulting cost function is therefore a combi-
nation of the likelihood function and the prior informa-
tion. Estimated values of the parameters are obtained
via a minimisation of the cost function performed with
a global search and a refined local search. Descent opti-
misation methods and MCMC methods have hence been
tested with simulated data and have led to very good re-
sults. One interesting feature of the MCMC method is
to get the probability density functions of each param-

eter as well as the joint probability density functions
between parameters. Uncertainties can hence be given
on estimated values of each parameter as well as depen-
dencies between parameters.

2 Poroelastic model description

The Biot’s model presented in this paper is used to cal-
culate the reflexion and transmission coefficients of a
porous material sample in a standing wave tube. Know-
ing these coefficients it is possible to predict the pressure
at any position inside the tube.

2.1 Biot’s model

In Biot’s theory, poroelastic materials are defined as
materials consisting of a fluid and a solid phase. Biot’s
model takes into account three different interactions
between the two phases.

Elastic coupling is taken into account in Equ. 1:{
σs = 2N εs + (P − 2N) tr(εs) I + Q tr(εf ) I ,
σf = R tr(εf ) I + Q tr(εs) I ,

(1)
where σs (resp. σf ) represents the solid (resp. fluid)
stress tensor, and εs (resp. εf ) represents the solid
(resp. fluid) strain tensor. I is the identity matrix, and
P ,Q,R, and N are classical elastic coefficients used in
Biot’s model and detailed in Equ. 2.

P =
4

3
N + Kb +

(1− φ)2

φ
Kf ,

Q =
R(1− φ)

φ
,

R = φKf .

(2)

N, Kb and ρs are respectively the shear modulus, the
bulk modulus and the density of the solid frame. φ
is the porisity, and Kf is the fluid compressibility



modulus.

Inertial coupling is taken into account in Equ. 3:{
�div(σs) = ρ11 �γs + ρ12 �γf ,
�div(σf ) = ρ22 �γf + ρ12 �γs ,

(3)

where ρ11,ρ22, and ρ12 are the classical inertial coupling
coefficients used in Biot’s model given in reference, and
recalled in Equ. 4.

ρ11 = ρs + φρf − φρ0 ,

ρ12 = −φρf + φρ0 ,

ρ22 = φρf .
(4)

Viscous and thermal dissipations are respectively
taken into account by frequency-dependant expressions
of fluid density ρf and dynamic fluid compressibility Kf .
Johnson-Allard’s expressions, given with a time depen-
dence e−jωt in Equ. 5, are used to describe the micro-
geometry structure with five parameters : porosity φ ,
tortuosity α∞ , airflow resistivity σ, and viscous and
thermal characteristic lengths Λ and Λ′. The airflow re-
sistivity can also be related to the viscous permeability
with σ = η/k0 where η is the dynamic fluid viscosity.
Pr is the Prandtl number.

ρf = ρ0α∞

(
1− σφ

jρ0α∞ω

√
1− 4j

ηα2
∞ωρ0

Λ2φ2σ2

)

Kf =
γP0

γ − (γ − 1)
(
1− 8η

jΛ′2 Pr ωρ0

√
1− jρ0

Pr Λ′2ω
16η

)−1

(5)

2.2 Standing wave tube

The case of a poroelastic material sample placed in a
standing wave tube and submitted to a normal incident
plane wave is considered as depicted in Fig. 1. The
reduced one-dimensional Biot’s model is therefore em-
ployed. In this case, the shear wave is not present in the
poroelastic material. Only the solid and fluid compres-
sional waves are necessary to take into account. Using
the wave formalism, the fluid and solid displacements
can hence be obtained as deriving from two scalar po-
tentials:

→

Us= ∇
(
Aejk1x + Be−jk1x

)
+ ∇

(
Cejk2x + De−jk2x

)
→

Uf= μ1∇
(
Aejk1x + Be−jk1x

)
+ μ2∇

(
Cejk2x + De−jk2x

)
(6)

A time dependency e−jωt is chosen. Wave numbers
k1,k2 and amplitude coefficients μ1,μ2 between the solid
and fluid displacements are recalled in Equ. 7:

k1 =

√
ω2

2(PR−Q2)

(
Pρ22 + Rρ11 − 2Qρ12 −

√
Δ
)
,

μ1 =
Pk2

1
−ω2ρ11

ω2ρ12−Qk2

1

,

k2 =

√
ω2

2(PR−Q2)

(
Pρ22 + Rρ11 − 2Qρ12 +

√
Δ
)
,

μ2 =
Pk2

2
−ω2ρ11

ω2ρ12−Qk2

2

.

(7)

with Δ = (Pρ22+Rρ11−2Qρ12)
2−4(PR−Q2)(ρ11ρ22−ρ2

12).

Figure 1: Standing-wave tube setup

Unknown amplitudes A, B, C and D are determined
using the boundary conditions at the interface of the
poroelastic material sample. In the present case of an
acoustic-poroelastic interface, coupling conditions are
given in Equ. 8. These equations are based on the flow,
the fluid pressure, and the total normal stress continuity
conditions.

⎧⎪⎪⎨
⎪⎪⎩

φ
→

Vf .�n + (1− φ)
→

Vs .�n =
→

Va .�n ,

φ σf .�n + (1− φ) σs.�n = −Pa.�n ,

σf .�n = −Pa.�n .

(8)

The acoustic pressure Pa and acoustic velocity Va

are related to the incident and reflected waves at x = 0,
and to the transmitted and backward waves at x = d.
Besides, incident and reflected waves are related by the
reflection coefficient, incident and transmitted waves by
the transmission coefficient, and transmitted and back-
ward waves are by the rigid boundary condition at
x = L.

Using Equ. 6 with Equ. 8, it is thus possible to cal-
culate the reflection and transmission coefficient of the
porous material sample. Then the total acoustic pres-
sure can be determined at any position in the tube, and
in particular at the four microphone positions, by sum-
ming the incident and reflected waves in the upstream
section and by summing the transmitted and the back-
ward waves in the downstream section. The only re-
maining unknown to set is the incident pressure.

3 Baysian identification method

The central idea beyond the Bayesian approach is to
build a cost function with endowed constraints from the
aposteriori probability density function (pdf) of the pa-
rameters to be inferred. In contrast to other optimi-
sation techniques, this will confer to the cost function
a direct probabilistic interpretation: not only will its
maximisation provide the most likely values of the pa-
rameters given the measured data – the so-called max-
imum aposteriori (MAP) estimates – but its shape will
be truly indicative of the joint probability distribution
of the estimated parameters as well. In particular it will
give access to the full covariance matrix, a fundamental
quantity to assess the variability of the estimates and
their mutual correlations.



3.1 Cost function

Namely, let θ = {φ, α∞, σ,Λ, kΛ, ρ1, P, ηs} be the vec-
tor of parameters to be inferred and p(θ|Pik, P inc

k ) its
pdf conditional to the observations of the four pressures
Pik ≡ Pi(ωk), i = 1, 2, 3, 4, as returned by the micro-
phones and the incident pressure P inc

k ≡ Pinc(ωk) at
frequencies ωk, k ∈ F . This is the aposteriori pdf which
reflects all the information that can be inferred on θ
from the measured data. Now from Bayes’rule

p(θ|Pik, P inc
k ) ∝ p(Pik|θ, P

inc
k )p(θ) (9)

where p(Pik|θ, P
inc
k ) is the likelihood and p(θ) is the

apriori pdf of the parameters, both of which can be
given closed-form expressions. In words, p(Pik|θ, P

inc
k )

reflects the direct problem which, given the values of θ
and Pinc(ωk) can predict the data Pi(ωk) – notwith-
standing measurement noise and modeling errors –
whereas p(θ) is the mechanism to assign weights to
the values of θ before the experience – based either on
the user’s expertise or subjective judgment, or on strict
physical constraints. The choice of the apriori pdf will
be discussed in the next subsection. That of the likeli-
hood proceeds as follows. Since the measured data are
functionally related to the vector of parameters θ as

Pik = βik(θ)P inc
k + Nik (10)

where βik(θ) is a deterministic function that embod-
ies the direct model and where Nik accounts for addi-
tive measurement noise, it results that p(Pik|θ, P

inc
k ) =

pN (Pik − βik(θ)P inc
k ) with pN (·) standing for the pdf of

Nik. Upon invoking the Central Limit Theorem applied
to the Fourier Transform, it happens that under mild
conditions pN (·) tends to a (complex) Gaussian distri-
bution. Hence, after further assuming that the measure-
ment noise is uncorrelated across the microphones,

p(θ|Pik, P
inc
k ) = p(θ)

∏
ωk∈F

exp
(
−∑4

i=1

|Pik−βik(θ)P inc

k
|2

σ2

ik

)
π
∏4

i=1 σ2
ik

.

(11)

This is the closed-form expression of the aposteriori pdf
of the parameters θ which can ow be explored in a vari-
ety of ways. In the present work, the optimal values of
the parameters are sought so as to maximise this expres-
sion or, more conveniently, so as to minimise its negative
logarithm

J(θ) = − ln p(θ) +
∑

ωk∈F

4∑
i=1

|Pik − βik(θ)P inc
k |2

σ2
ik

. (12)

In doing so, one should keep in mind that P inc
k is the

first quantity to be inferred since it is not measured by
the microphones. This is easily achieved analytically by
setting the gradient of J(θ) w.r.t. P inc

k to zero, thus
giving

P̂ inc
k =

∑4
i=1 βik(θ)∗Pikσ−2

ik∑4
i=1 |βik(θ)|2σ−2

ik

(13)

which is to be used in place of P inc
k in J(θ).

3.2 Prior information

The apriori density function p(θ) on the inferred param-
eters plays a central rôle in the bayesian approach. It

is actually the mechanism by which the inverse prob-
lem is regularised, i.e. forced to find an unique and
stable solution. As mentioned above, there are many
possible choices p(θ) that may reflect the user’s apri-
ori on the problem. In the present study, a separable
pdf p(θ) =

∏8
i p(θi) was chosen, meaning that the pa-

rameters are a priori mutually independent. Then, for
the sake of simplicity, each pdf p(θi) was modelled as a
Chi2 distribution with “scale parameter” λi and number
of degrees-of-freedom νi, viz.,

ln p(θi) = −(λi−1) ln(aiθi+bi)+
νi

2
(aiθi+bi)+C (14)

with C a constant to be neglected in J(θ). This natu-
rally enforces a constraint of positivity (ai = 1, bi = 0)
on parameters σ, Λ, ρ1, P and ηs, and after a suitable
change of variable (ai = ±1, bi = ∓1), constraints of
having φ ≤ 1, α∞ > 1 and kΛ ≥ 1. Moreover, the
values of λi and νi may be tuned from their relations
λi = μ2

θi
/σ2

θi
and νi = 2μθi

/σ2
θi

with the expected mean
μθi

and variance σ2
θi

of the parameter θi.

4 Poroelastic parameters charac-

terization

4.1 Experimental data

The identification process described in this paper relies
on pressure measurements Pik made in a standing wave
tube presented in Fig. 1. A small tube and a large tube
are used in order to get a wide frequency band from 50Hz
to 5500Hz. It is important here to reach high frequen-
cies to get, if possible, the effects of all the parameters
including the solid phase elastic parameters. A multisi-
nus excitation is also used to verify the linearity of the
measurement.

4.2 Optimisation method

The aim of the optimisation tools described here is to
get a good estimation of each parameter with a ro-
bust method and as few as possible a time-consuming
method. Besides, the major problem to avoid is to be
trapped in a local minimum of the cost function. With
descent optimisation methods, the result depends highly
on the inital starting point. These methods are there-
fore generally used for local search to refine a solution
obtained after a global search. However, global search
methods like genetic algorithm or monte-carlo methods
are very time consuming when the number of parame-
ters to estimate is important and when the search space
is large. In the following, two complementary optimisa-
tion methods are detailed.

4.2.1 Constrained optimisation problem

When using optimisation tools, global search and lo-
cal search must be employed wittingly. First, a global
search is used to limit the search space. The chosen
method to explore the domain is an interior-reflective
Newton method with random initial values generated
over a large search space. However, in order to ensure



a good convergence in a limited time, prior informa-
tion similar to those used in the cost function are also
employed to generate the initial random values. Initial
values of the porosity are for example generated with
a normal distribution around the mean value used as
apriori (0.96). However it is also important to not limit
the search domain with a too narrow distribution. The
distribution of random initial values must therefore be
adapted for each parameters.

Moreover, some parameters such as the resistivity or
the elastic coefficient have a very wide range of possi-
ble values. It is thus important to limit the search do-
main by defining an reasonable mean value and a limited
search space for these parameters. The user knowledge
on the studied material is indeed usefull in this case to
say whether the material is considered as rigid or soft
and whether the material is considered as resistive or
not. A constant distribution can then be used to gen-
erate random values around these values. The search
domain is hence limited around the mean value with a
constant distribution probability.

Finally, two optimisation loops are used with the
same constrained nonlinear optimisation function. The
first one explores the global search space, and then the
second loop refines the solution in a more limited search
space.

4.2.2 Markov Chain Monte Carlo method

Markov Chain Monte Carlo (MCMC) techniques are of-
ten applied in optimisation problems when facing large
dimensional search spaces. The basic idea of such op-
timisation tools is to generate random samples and to
explore the search space with a Markov Chain designed
to spend more time in the most important regions, ie.
around the maximum of the cost function. This method
gives access to the joint probability density function of
the inferred parameters and is very usefull to assess the
accuracy of the parameters estimates.

The main drawback of this method is the time of
computation necessary to ensure a good convergence
when the search space is too large. This time can be
quite long but is not insurmountable.

5 Experimental results and com-

parison with direct measure-

ments

In order to evaluate the efficiency and the robust-
ness of the proposed identification method, pressure
measurements Pik have been made with fibrous and
porous materials. For sake of conciseness only one
material is presented to illustrate the method reliability.
The chosen material is a low density fibrous material
called MAT 1. The thickness of the sample tested is
15mm. This material was also characterized with direct
measurements taken as reference (see Table 1).

The expected mean μθi
and variance σ2

θi
of each pa-

rameter θi used in apriori pdf are adjusted. Hence, com-
pared to other fibrous material such as rockwool or glass-
wool, this synthetic fibrous material has a low density,
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Figure 2: Cost Function evaluation - f ∈ [400, 6000]
with Δf = 10Hz - Sample thickness : 1.5cm - Thick

black line : cost function with prior information - thin
red line : cost function without prior information

and a low rigidity. Mean values and standard devia-
tions used in the probability density functions are given
in Table 1.

Table 1: Parameters.

Parameters Mean Values St.Dev. MAT 1
φ 0.96 0.024 0.98

α∞ 1.15 2.5 1
σ (103Nm−4s) 31 8.4 21.2

Λ (μm) 98 59 60
kΛ 2 0.58 1.7

ρ1 (kg/m3) 36 11 29
P (103Pa) 5 1.4 6.6

ηs 0.093 0.019 0.13

The variance σ2
ik on the measured pressures is also

used to adjust the influence of the apriori information on
the cost function. Its value is set to 5.10−3 and permits
to take into account the measurement uncertainties but
also the model uncertainties. Cost functions hence ob-
tained are plotted in Fig. 2. Each parameters is tested
around its mean value. One can observe here that apri-
ori information are essential on some parameters that
cannot be identified. This is the case for the solid phase
parameters such as the elastic coefficient and the struc-
tural damping.

The aposteriori probability density functions (pdf)
obtained with the MCMC method are presented on
Fig. 3. The pdf of the solid density seems very flat.
However, all the parameters can be infered from these
pdf. The values obtained are presented and compared
with direct measurements in Table 2. All the parame-
ters are well identified, except the elastic coefficient and
the structural damping. However, this material can be
considered as a rigid frame material, and the solid phase
elasticity is not taking part in the response measured by
the microphones. It explains thus why the solid phase
elastic coefficients cannot be well identified.



Table 2: Comparison with direct measurements.

Parameters Reference MCMC Error %
φ 0.98 0.984 0.41

α∞ 1 1.01 1.1
σ (103Nm−4s) 21 19.4 8.7

Λ (μm) 60 62.9 4.8
kΛ 1.7 1.74 4.2

ρ1 (kg/m3) 29 29.3 1.2
P (103Pa) 6.6 4.2 30

ηs 0.13 0.008 38
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Figure 3: Probability density functions obtained with
the MCMC method on material MAT 1

6 Conclusion

Descent optimisation methods and MCMC methods
have hence been tested with experimental data and
have led to good results. One interesting feature of the
MCMC method is to get the probability density function
of each parameter. Uncertainties can hence be given on
estimated values of each parameter. It is however impor-
tant to notice that apriori information on the material
are very important. If apriori information are far from
the reality, the cost function is less likely to find the real
parameters and the starting initial values used in the
optimisation method do not permit to ensure a good
convergence toward the global minimum. Finally, it is
also important to notice that several experimental data
are necessary to get a good estimation of the parame-
ters. Effects of circumferential edge constraint[13] and
inhomogeneous material samples can hence be averaged
over several samples.
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