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Many real-world systems exhibit nonlinear behavior that must be taken into account when modeling
such systems. In practise, especially in the field of electro-acoustics, nonlinearities appear with increasing
input level. These nonlinearities are usually modeled by adding nonlinear parameters to the linear model,
but the determination of nonlinear physical parameters is rather difficult problem.
The authors present a simple method for analysis and identification of nonlinear systems, based on swept-
sine signal excitation. The method is based on nonlinear convolution, firstly proposed by Angelo Farina
[1], which serves for analysis of nonlinear amplitude characteristics. The result of the nonlinear convolu-
tion method is the set of harmonic distortion products (higher order nonlinear impulse responses) that
can be expressed either in the form of the separated impulse responses or in the form of frequency depen-
dent components. The original method [1] was improved in order to analyze also the phase characteristics
of all the nonlinear parts. Therefore, the excitation sweep signal from the improved method [2] has to be
setup very properly. The precisely measured nonlinear amplitude and phase characteristics can be used
for analysis of the nonlinear system under test, or for identification of a nonlinear model (i.e. generalized
Hammerstein model). The method is presented here when studying an electrodynamic loudspeaker from
the nonlinear point of view. More precisely the electrodynamic loudspeaker under test is characterized
by its electrical impedance leading to Thiele/Small parameters in a nonlinear framework.

1 Introduction

The electrical impedance measurement of a loudspeaker
is an important diagnostic tool. It is indeed possible to
find out a lot about how a loudspeaker behaves from the
knowledge of its electrical impedance.

Since the impedance of a loudspeaker is a frequency-
dependent parameter, it must be measured all over the
working frequency range of the loudspeaker. Moreover,
when exceeding a certain value of input level, the loud-
speaker behaves as a nonlinear system with input level
dependence and thus it must be also measured for mul-
tiple input levels [3].

In this paper we propose a method for nonlinear elec-
trical impedance measurement based on Synchronized
Swept-Sine method developed for the analysis and the
identification of nonlinear systems [2].

2 Linear impedance measure-
ment

To estimate the impedance of the loudspeaker at any
particular frequency ω, we need to measure simultane-
ously the values of both the current I through the loud-
speaker and the voltage Uhp across it. The impedance
of the loudspeaker Z is then given by

Z(ω) =
Uhp

I
, (1)

where Uhp and I are complex-valued.
As almost all the acquisition devices measure the

voltage, an additional resistor R, called shunt, is gen-

erally used. Since the shunt is in series with the loud-
speaker, the current I flowing through it is the same
than through the loudspeaker. Then, two values are
needed to be measured: the voltage across the loud-
speaker Uhp and the voltage across the shunt Ur. The
impedance Z is then given by

Z = R
Uhp

Ur
. (2)

The block diagram of the loudspeaker impedance mea-
surement is depicted in Figure 1.
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Figure 1: Impedance measurement of a loudspeaker
using a shunt resistor.

3 Nonlinear modeling of im-
pedance and admittance

For high levels of input current (or voltage), the loud-
speaker can not anymore be considered as a linear de-
vice. Then, the relation between current through the
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Figure 2: Nonlinear relation between current i(t) and
voltage u(t) expressed as a general nonlinear system.

loudspeaker, i(t), and voltage across it, u(t), is a non-
linear relation. As a consequence a harmonic current
i(t) = Imax cos(ωt) creates a distorted voltage u(t) in-
cluding higher harmonics

u(t) =
∞∑

n=1

Uncos(nω0t + ϕn). (3)

In the case of a linear system we have Un>1 = 0, Φn>1 =
0 and we usually define a complex linear impedance as

Zlin(ω) =
U1

Imax
exp(jϕ1). (4)

For a nonlinear system, the definition of linear im-
pedance (voltage and current ratio) falls down, but the
generation of higher harmonics allows to model the non-
linear impedance Znonlin as a a general nonlinear system
with input i(t) and output u(t) (Fig. 2).

The nonlinear systems are usually modeled by
Volterra series [4], or by structures such as Hammer-
stein or Wiener models [5]. Considering the nonlinear
impedance as a nonlinear system, we can model it by
generalized polynomial Hammerstein structure (Fig. 3)
and we can write

u(t) =
N∑

n=1

in(t) ∗ zn(t), (5)

where zn(t) is inverse fourier transform of Zn(ω) and N
is the number of nonlinear terms chosen by user. The
higher the value of N the higher the accuracy of the
identification.

In the same way, we can define a nonlinear admit-
tance when replacing current by voltage and vice-versa
(5). This case can be more suitable for standard mea-
surements, because it is simpler to keep the voltage sinu-
soidal and measure the distorted current. In that case,
we model the admittance Ynonlin.

If we consider only the real parts of the nonlinear
impedance Rn = �{Zn}, we can write

u(t) =
N∑

n=1

Rnin(t) = R1i(t) + R2i
2(t) + R3i

3(t) + . . . .

(6)
As a consequence the impedance (or its real part - re-
sistance) measured in linear way varies with current i(t)
in relation uR(i) = R(i)i as,

R = R1 + R2i(t) + R3i
2(t) + . . . =

N∑
n=1

Rnin−1(t). (7)

This definition of nonlinear impedance (or admit-
tance) is sometimes used [6] to derive the nonlinear
Thiele/Small parameters Re(i) (electrical resistance of
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Figure 3: Nonlinear relation between current i(t) and
voltage u(t) expressed in a form of generalized

polynomial Hammerstein model.

voice coil), Bl(i) (electrodynamic driving parameter),
Rms (mechanical damping parameter), k(i) (mechani-
cal stiffness), Mms(i) (equivalent mass of moving coil)
and Le(i) (inductance of voice coil).

4 First harmonic measurement

One of the methods used to estimate the nonlinear im-
pedance coefficients Z1, Z2, Z3, . . . is to measure the
nonlinear impedance in a ”linear way” for different am-
plitudes [6]. This measurement is usually performed us-
ing a gain-phase analyzer or an impedance analyzer that
filters out the higher harmonics products and calculates
the impedance as defined in (4). Unfortunately, this
measurements gives just the first harmonic dependency
but not the nonlinear dependency as a whole, nor the
nonlinear dependency of a linear part, as checked below.

For the sake of clarity, we consider here the real part
of the nonlinear impedance R = �{Z} and a nonlinear
system with coefficients Zn>3 = 0. In that case, we can
write

uR(i) = R1i + R2i
2 + R3i

3. (8)

When providing a harmonic current i = Imax cos(ω0t)
at the input of the (nonlinear) system, the nonlinear
device produces a nonlinear voltage

uR = R1Imax cos(ω0t)
+R2I

2
max cos2(ω0t)

+R3I
3
max cos3(ω0t).

Using trigonometric power formulas [7] we can write

uR =
1
2
R2I

2
max

+
(

R1Imax +
3
4
R3I

3
max

)
cos(ω0t)

+
1
2
R2I

2
max cos(2ω0t)

+
1
4
R3I

3
max cos(3ω0t).

The first harmonic of the voltage is then expressed as

u1R = R1Imax +
3
4
R3I

3
max, (9)



and it is obvious that, if only first harmonic is consid-
ered, then the influence of the third order R3 is also
taken into account in u1R. Consequently, all odd orders
will influence the first harmonic. In contrary, all even
orders will not. In other words, odd and even orders are
mutually uncorrelated.

If the nonlinear device is measured for several input
levels with linear techniques (impedance analyzer), only
first harmonic is considered. This kind of measurement
can be sufficient if there exists a nonlinear differential
equation describing the nonlinear device and solved for
the first harmonic [8], but the first harmonic dependency
cannot be understood as a nonlinear impedance of the
device under test.

5 Measurement of nonlinear
impedance / admittance us-
ing Synchronized Swept-Sine
method

In previous section, it has been shown that all the higher
harmonics should be taken into account when dealing
with nonlinear systems. The nonlinear system can be
described either by Volterra series [4], or by another sim-
pler model such as generalized Hammerstein or Wiener
model [5]. However, these nonlinear models are inde-
pendent of the amplitudes of the input signal, that is,
in the case of loudspeaker, of the actual voice-coil posi-
tion [9]. In case of a loudspeaker and for small voice-coil
displacements, the models fit well [10], but the higher
the displacement the lower the accuracy of the model.

Recently developed Synchronized Swept-Sine
method for identification of nonlinear systems [2], based
on an input exponential swept-sine signal [1] allows a
robust and fast one-path analysis and identification of
the unknown nonlinear system under test. It allows
to estimate the nonlinear impedance coefficients Zn in
amplitude and phase (Fig. 2).

First, a swept-sine signal exhibiting an exponential
instantaneous frequency is generated and used as the
input signal of the nonlinear system under test. If the
measured value is impedance, the swept-sine signal is
equal to the current passing through the loudspeaker
and the voltage is distorted and vice versa for admit-
tance. The distorted signal is convolved with the time-
reversal replica of the input signal what separates the
higher order nonlinear impulse responses zn(t) that can
be expressed in the more usual form of frequency de-
pendent impedance components Zn(ω). Mathematical
derivation of the method is detailed in [2].

6 Results : first harmonic vs lin-
ear part

In this section, we compare the first harmonic and the
linear part measurements as defined in section 4. An
electromagnetic loudspeaker with diaphragm diameter
14 cm, impedance 4 Ω and resonance frequency 77 Hz
has been measured using nonlinear swept-sine technique
described in [2]. This technique permits to measure the

frequency dependency of higher harmonics in both am-
plitude and phase, within one measurement, and to es-
timate the nonlinear model of the measured nonlinear
device in the form of generalized Hammerstein model.

To avoid any nonlinearities from other devices than
the loudspeaker, an amplifier with negligible distortion
has been used. The used amplifier acts as a source of
voltage. The voltage across the loudspeaker is then kept
linear and constant in amplitude. The current changes
in nonlinear way due to the nonlinear impedance. That
is why the nonlinear admittance measurement is used.

The results are presented in Fig. 4-6. In Fig. 5, the
admittance frequency dependence first harmonic is de-
picted for several values of input voltage between 0.5
and 5 Volts. As explained in section 4, the admittance
value consequently includes the linear and the odd or-
der contributions. In figure 6, the linear contribution is
plotted thanks to the generalized Hammerstein model.
This first order admittance represents the purely linear
contribution of the nonlinear system under test.

It is noticeable that higher orders influence the first
harmonic. In figure 4, the resonance frequency is esti-
mated based on both measured techniques. The incor-
rect measurement based only on the first harmonics re-
sults in a completely different resonance frequency shift
than when taking into account the higher orders of the
nonlinear system (the first order estimation).
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Figure 4: Estimation of resonance frequency of
loudspeaker in nonlinear mode using measured data
from first harmonic (blue-triangled) and from first

order of Hammerstein model (red-squared) for several
values of input voltage between 0.5 and 5 Volts.

7 Conclusion

In this paper, two ways of measuring a nonlinear admit-
tance are compared, both theoretically and experimen-
tally. We prove that electrodynamic loudspeaker nonlin-
ear contributions have to be carefully taken into account
for example through a generalized Hammerstein model-
ing [2]. The works in progress aim at physically inter-
preting both the linear part and the first harmonic mea-
surements regarding a nonlinear Thiele/Small model of
electrodynamic loudspeaker.
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Figure 5: Admittance of the loudspeaker under test measured as a first harmonic of distorted current and linear
voltage ratio (influence of higher orders is not taken into account). Measurements done for several values of input

voltage between 0.5 and 5 Volts.
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Figure 6: The linear part of the admittance of the loudspeaker under test derived from the Hammerstein model
(influence of higher orders taken into account). Measurements done for several values of input voltage between 0.5

and 5 Volts.


