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Lyon, 12-16 Avril 2010

Statistical underwater noise level estimation for marine mammal whistle

detection

Sylvain Busson, Cédric Gervaise
ENSIETA, DTN, 2 rue F. Verny, 29206 Brest {sylvain.busson,cedric.gervaise}@ensieta.fr

Passive Acoustic Monitoring (PAM) of marine mammal vocalizations has been intensively used in ap-
plications such as marine wildlife surveys. Marine mammals regularly produce sounds to echolocate, to
communicate and while foraging and PAM is a complementary tool of visual-based observations for den-
sity estimation. Vocalizations of marine mammals are divided into two categories: impulse sounds and
frequency modulation whistles. A common way to detect whistles consists in forming signal spectrogram
and to check for frequency modulation tracks. Whistles tracks are made of energetic pixels identified by
comparing each spectrogram pixel levels with an estimate of local noise. Despite simple to implement
and quite effective, usual noise level estimation via signal low-pass filtering lead to false alarms in non-
stationary noise conditions as in the vicinity of human activities or in coastal observatories. A noise level
estimation algorithm is proposed by taking into account the statistical properties of noise only samples
of the spectrogram. The algorithm is based on minima statistics of a time-frequency neighborhood of
the current spectrogram pixel where noise only pixels follow a chi-square distribution. The estimation
is effectively applied on field data. Major drawbacks coming from low-pass filtering are avoided and the
noise level is in closer agreement to the real noise level. Interpolation schemes are proposed to keep the
real-time implementation of the algorithm feasible.

1 Introduction

Studies on impacts and mitigations of anthropogenic
sounds on marine mammals are of growing importance
[1] and Passive Acoustic Monitoring (PAM) [2] is a
tool of choice for such studies. Marine mammals regu-
larly produce sounds to echolocate, to communicate and
while foraging. PAM is a complementary tool of visual-
based observations. Vocalizations of marine mammals
can be divided into two categories: impulse sounds and
frequency modulation whistles. The first stage of PAM
system is dedicated to the detection of bioacoustics ac-
tivities. A common way to detect underwater bioacous-
tics signals consists in computing signal spectrogram. A
binary test is applied on each spectrogram pixel to dis-
criminate between H0 = ’noise only’ and H1 = ’noise
+ signal’ hypothesis. The decision is based on the en-
ergy of the pixel: if the energy exceeds a threshold the
decision ’signal + noise’ is made:{

H0 : γS < T
H1 : γS > T

(1)

where γS is the pixel energy and T is the energy thresh-
old. Alternatively, equation (1) can be expressed in
terms of signal to noise ratio (SNR) by defining T = λγn
where γn is an estimation of the ’noise only’ energy level.
If H0 is decided when a signal is present, it is called a
miss and when H1 = is decided when a signal is absent,
it is a false alarm.

One common implementation of the noise level esti-
mation (NLE) is computed via time averaging obtained
either by low-pass filtering or smoothing techniques. A

local NLE is computed using few pixels in the same fre-
quency channel around the current pixel. Despite simple
to implement and quite effective, this approach could
lead to major drawbacks. The integration time should
be chosen carefully by taking into account the signal
stationarity. In one hand, if the signal is composed of
strong energetic impulse sounds, like echolocation clicks
of marine mammals, the noise level estimation will rise
after the impulse and this will result in a period of over-
estimation. During that signal shadowing period, the
PAM system will not be able to detect any weaker sig-
nals. In a group of marine mammals, clicks and whistles
can occur simultaneously. As clicks carry far more en-
ergy than whistles, they will not be detected a during
shadowing period. In the other hand, if the time con-
stant is chosen too short in non-stationary noise condi-
tions as it occurs in the vicinity of human activities or
in coastal observatories, the noise level will be underes-
timated. In that case, the detection will be prone to a
high false alarm rate.
We propose a NLE algorithm by taking into account not
only few pixels before the current pixel but hundreds of
pixels of a time-frequency neighborhood centered on the
current pixel. Using the average energy of pixel in the
neighborhood could lead to overestimate the noise level
if signal is present. In our algorithm, the estimation
is based on the statistics of noise only pixels which are
represented by the lowest energy pixels of the neighbor-
hood. The parameters of the algorithm are the shape
and the size of the neighborhood and the number of the
pixels of weak energy taken into account for the esti-
mation of noise statistics. The noise level is obtained



by an approximation of statistics of the distribution the
pixels of the spectrogram which are assumed to follow a
chi-square distribution.
The estimation is effectively applied on both synthetic
and field data. Major drawbacks coming from low-pass
filtering are avoided. The statistical NLE has weaker
biais and variance. However, this noise level estimation
technique is time-consuming. Interpolation techniques
are proposed to keep the real-time implementation of
the algorithm feasible. A 10 seconds signal with a sam-
pling frequency of 44100 Hz, which corresponds to a
9.105 pixels spectrogram, is processed in no more than
1.5 seconds on a standard computer.

2 Methods

2.1 Probability distribution of spectro-
gram coefficients

Let be x[n] a discrete signal and Xω[n, k] its Short-Time
Fourier Transform (STFT) composed of successive dis-
crete Fourier Transforms of portions of x[n]. Each por-
tions are weighted by an analysis window ω[n] of length
M . The spectrogram of x[n], noted Sωx [n, k], corre-
sponds to the sum of the square modulus of Xr

ω[n, k]
and Xi

ω[n, k], the STFT real and imaginary parts re-
spectively:

Sωx [n, k] = Xr
ω[n, k]2 +Xi

ω[n, k]2, (2)

Xr
ω[n, k] =

M−1∑
m=0

x[n−m]ω[m] cos(−2πk
m

M
), (3)

Xi
ω[n, k] =

M−1∑
m=0

x[n−m]ω[m] sin(−2πk
m

M
), (4)

Under the assumption that x[n] is a white noise rep-
resented by a stationary Gaussian random process with
variance γ2

n, Xr
ω[n, k] and Xi

ω[n, k] follow a Gaussian law
and Sωx [n, k] is proportional to a χ2 variable with the de-
grees of freedom δ, a non-centrality parameter θ and a
coefficient of proportionality equal to α [3]:

pχ2(x) =
1

(2α)δ/2Γ(δ/2)
x
δ
2−1 exp(− x

2α
) (5)

∀x > 0, where Γ is the gamma function. Considering
that δ = 2 and assuming that α = γn[n,k]

2 and θ = 0 for
’noise only’ pixels, the pdf of H0 is:

pH0(x) =
1
γn

exp(− x

γn[n, k]
) (6)

The probability density function (pdf) of the spec-
trogram may deviate from a χ2 law if real and imaginary
part of Sωx [n, k] have different variances and if they are
not independent variables. The use of a null boundaries
window reduces mismatches between spectrogram and
χ2 pdfs [4].

2.2 Noise level estimation

2.2.1 Estimation via low-pass filtering

The smoothing of spectrogram coefficient is a widely
used technique for NLE. A 1st order infinite impulse
response (IIR) low-pass filter applied to each frequency
channel realizes a NLE via time recursive smoothing :

γ̂n[n, k] = (1 +A)Sωx [n, k]−A× γ̂n[n− 1, k] (7)

with

A = exp
−(1− τS)M

τifs
(8)

where τS is the overlap ratio of ω[n], fs the signal
sampling frequency and τi the integration time of the
smoothing filter. The major drawback of this technique
is the constant integration time throughout a signal
when the signal is composed of a wild variety of im-
pulsive and frequency modulated sounds is not suited
for the purpose of the detection scheme for the reasons
mentioned in the introduction.

2.2.2 Estimation via statistical estimation

The principle of the statistical NLE proposed here is to
extract the parameters the distribution of ’noise only’
pixels in a time-frequency neighborhood of the current
pixel. The NLE is less sensitive to abrupt change in
the signal energy by taking into account not only the
past pixels of the same frequency channel but the local
time-frequency behavior of the current pixel. Given a
mixture of noise and signal, we can make the assumption
that the lowest energetic pixels are ’noise only’ pixels.
The statistical NLE is based on the distribution function
of the lowest energetic pixels of a neighborhood. Let
be x(1) . . . x(N) a sorted set of N χ2 variables with two
degrees of freedom, the distribution function FX(x) =
P [X < x] is:

FX(x) = 1− exp(− x

γn
) (9)

then
γn =

x

− ln(1− FX(x))
(10)

An empirical estimation of the distribution function
is:

F̂X(x(i)) =
i

N
(11)

Given this estimation, a NLE for each of the N χ2 vari-
ables x(1) . . . x(N) is:

γ̂n =
x(i)

− ln(1− i
N )

(12)

Let be Z the number of noise only pixels in a neighbor-
hood of N pixels, then the NLE chosen here is the one
that has the lowest variance [5]:

γ̂n =
x(Z)

− ln(1− Z
N )

(13)



2.2.3 Evaluation of the statistical NLE

This section is dedicated to the evaluation of the sta-
tistical NLE in terms of its normalized bias and vari-
ance. The signal used here is a centered gaussian noise
with a duration of 4 seconds and a sampling frequency
of 48 kHz. The spectrogram is computed using a -180
dB Kaiser window of length 256 samples with an over-
lapping ratio of 0.5 and STFT length of 1024. The
NLE is evaluated for only one pixel in the middle of the
spectrogram and the evaluation is repeated 1000 times
(R = 1000). The target value is the arithmetic mean of
the pixel inside a time-frequency neighborhood of size
1001×1001 (N = 106):

γn =
1

R×N

R∑
j=1

N∑
i=1

γji (14)

The parameters of the evaluation are the number of
pixels in the neighborhood and the number of pixels con-
sidered as ”noise only”. A square-shaped neighborhood
is used in the evaluation. Changing the shape would not
bring additional information as the signal is stationary
and white. The normalized bias and variance are com-
puted as follow:

Bγn =
E[γ̂n]− γn

γn
(15)

V arγn =
V ar(γ̂n)
γ2
n

(16)

The figure Fig.1 depicts the normalized bias and log-
variance as a function of the number of pixels in the
neighborhood for various values of Z. Bias and variance
are decreasing functions of number of pixels and of Z.
As the signal contains no information but the noise, the
noise estimation gets closer to the target value as the
number of pixels used for the statistical estimation in-
creases. For Z values equal to N

10 and higher, the asymp-
totic bias value is reached even with small neighborhood
whereas for Z values lower than N

10 the neighborhood
must have at least 104 pixels.

3 Results

3.1 Synthetic data

The statistical NLE is now applied to a simulated data
to highlight the benefit of the method in comparison
with the IIR smoothing filter. The sound file under
study is made of a Gaussian white noise and three sig-
nals to be detected: one monochromatic frequency line,
a wide-band transient to simulate a bio-acoustic click
and an up-sweep between 2 kHz and 8 kHz to synthe-
size a whistle with lesser energy than the click. The
comparison between both methods is made by plotting
the detection maps. γ̂n are computed for each pixel of
the spectrogram and the pixel is detected if its energy
is higher than 10 times the noise level (i.e. we consider
λ = 10 dB). The parameters of the statistical NLE are
a neighborhood of size N = 21 ∗ 21 and Z = 3N/4 and
the IIR integration time is 1 second.

The figure Fig.2 shows in the upper panel the spec-
trogram of the sound file (the frequency line cannot be

Figure 2: Detection maps for sperm-whales clicks and
λ = 10 dB. Top panel, signal spectrogram with level in

db ref 1 UA2/Hz; middle panel, IIR NLE detection
results with τi = 1 s; bottom panel, statistical NLE
detection results with neighborhood of size 21*21,

Z = 3N/4.

seen because of the picture resolution), in the middle
panel the detection map for the IIR method and in the
bottom panel the detection map for the statistical NLE.
Detected pixel are depicted with red squares. The IIR
NLE shows clearly a masking effect due to the strong
click and the integration time. After the click, no more
pixels are detected. The frequency line is not detected
at all. As the IIR NLE is computed for each frequency
channel independently, the frequency line is considered
as noise and no pixel with lesser energy could be de-
tected on the corresponding frequency channel. The de-
tection map of the statistical NLE shows all the three
signals to be detected. No masking effect is observed
and the frequency line is well defined thanks to use of a
time-frequency neighborhood.

3.2 Field data

The statistical NLE is now applied to field data. The
sound file is a 16 bits resolution, 96 kHz frequency sam-
pling recording from the NEMO observatory in Catane,
Sicilia at 2000 m depth. The four panels of the fig-
ure Fig.3 depict four replications of the results of the
statistical NLE with four neighborhood sizes : the top
panel is for a 3*3 neighborhood, the middle-top panel
is for a 5*5 neighborhood, the top middle-bottom panel
is for a 21*21 neighborhood and the bottom panel is
for a 51*51 neighborhood. The background noise is
nearly stationary and but not white. We can see on
the figure Fig.3 that the small neighborhoods overesti-
mate the noise level and they are too sensitive to strong
signal energy fluctuations. The presence of an impulse
sound would lead to a blind period of detection. In the
opposite, the use of large neighborhoods reduce the esti-
mation bias and result in a smoothed NLE with a lower
dynamic.

The figure in top panel of the Fig.4 shows the spec-



Figure 1: Normalized bias and log-variance for noise only signal as functions of the number of pixels in the time
frequency neighborhood for various values of Z.

trogram of the recording. The vertical lines correspond
to sperm-whales clicks. Whistles of risso dolphins are
also present (cf. between 12 and 13 seconds). The fig-
ure in the middle panel of the Fig.4 depicts the detection
map of the IIR NLE with λ = 10 dB and τi = 1 s. The
masking effect due to the clicks is visible and it leads
to click misses. When two clicks are close in time the
second is missed. The whistle between 12 and 13 second
is not detected. The figure in the bottom panel of the
Fig.4 shows the results of the detection via statistical
NLE with a time-frequency neighborhood of size 21*21,
Z = N/2 and λ = 10 dB. All the clicks are detected and
the whistle between 12 and 13 second is well-defined
even if a click appears simultaneously. The detection
map of the statistical NLE show far more above thresh-
old pixels and more energetic pixels (pixels with brighter
gray level).

3.3 Computational time

The major drawback of the statistical MLE is its com-
putation cost. For example, the statistical method re-
quires 441 uses of the equation 14 for one NLE whereas
the IIR method requires only 2 calculi (cf. eq (7)) for
one NLE. The use of statistical methods could lead to
implementation troubles when dealing with embedded
hardware and real-time processing where both compu-
tational resources and processing time are critical. To
tackle these problems, experiments involving interpola-
tion and decimation are run to reduce required compu-
tational resources. The statistical NLE is evaluated only
for the half the spectrogram pixels and this coarse NLE
map is then refined thanks to a linear interpolation to
the fit the original time-frequency resolution. The ta-
ble Tab.1 shows measures of computational speed for
a spectrogram of 9.105 pixels. The spectrogram is ob-
tained for a 10 seconds signal with a sampling frequency
of 44100 Hz, a FFT window size of 2048 and an overlap
factor of 0.75. The computation are processed via an
Intel Core 2 Duo computer with a 3.16 GHz clock and

3.35 Go of RAM. When the coarse computation grid is
used, the computation speed increases dramatically and
the computation time is below the real-time (1.3 s for
a 10 s signal, spectrogram computation not taken into
consideration). The table Tab.1 indicates results for two
sizes of square-shaped neighborhood. The computation
time reduces from 21.5 s to 7.5 s when neighborhood
size decreases from 21*21 to 11*11. The last two entry
of Tab.1 show that the computational time does not de-
crease when using a coarse computation grid and as the
neighborhood size varies from 21*21 to 11*11. This is
due to the increase of the number of pixels we account
for when reducing the size of neighborhood in conjunc-
tion with keeping the coarse map resolution 50% lower
than the original.

Table 1: Computational time of IIR and statistical
NLE.

Method Neighborhood
size

Interpolation Time
(s)

IIR non non 0.008
statistical 21*21 non 21
statistical 11*11 non 7.5
statistical 21*21 oui 1.3
statistical 11*11 oui 1.3

4 Discussion

The results section substantiates that the statistical
NLE enables far more pixels to be detected using a de-
tection scheme based on the energy ratio between ’noise
only’ and ’noise + signal’ pixels. The SNR threshold
value can be lowered in comparison with IIR method.
A decrease of the SNR threshold can be transposed into
an increase in the detection range using the sonar equa-
tion :



Figure 3: Spectrograms of statistical noise level
estimation. Top panel: 3*3 neighborhood, middle-top
panel: 5*5 neighborhood, middle-bottom panel: 21*21

neighborhood, bottom panel: 51*51 neighborhood.

Figure 4: Detection map for sperm-whales clicks and
λ = 10dB. Top panel, signal spectrogram with level in

db ref 1 UA2/Hz; middle panel, IIR NLE detection
results with τi = 1s; bottom panel, statistical NLE
detection results with neighborhood of size 21*21,

Z = N/2.

λ = SL− TL− γn (17)

where SL is the sound level in db ref 1µPa2 at 1 m, TL
are the transmission losses and γn the noise level. If we
consider spherical losses :

TL = 20 log 10R (18)

where is the detection range express in meter. It follows
that lowering λ increases the range of detection:

R = 10
SL−λ−γn

20 (19)

As the number of detected pixel increase dramati-
cally, the bio-acoustic stage of a PAM detector should
be adapted to avoid an increase in the false alarm rate.
The effort should be put in particular to avoid isolated
pixels in the detection map.
The application of the statistical NLE to field data
shows the interest of the method when multiple species
are present, for example sperm-whales and dolphins, or
when the species produce clicks and whistles, as dol-
phins do. Thanks to the statistical NLE, the whistles,
which consist in frequency modulation tracks, are eas-
ier to extract from a raw recording. This is remarkably
useful when dealing with density estimation purposes
or when classification process required sharp edge de-
tection. An other benefit of the statistical method is
that it will helps tracking methods as Kalman filter [6]
or time-frequency-phase analyzer [7] for the analysis of
the whistles.
The major drawback of the method proposed here is its
computational cost. Decimation and interpolation are
successfully implemented to reach the real-time imple-
mentation. Depending of the environmental and record-
ing conditions, the noise level could be either non sta-
tionary with highly fluctuating spectral features, as it



occurs in coastal area or in the vicinity of ship traffic,
or stationary with fixed mean amplitude spectrum (cf.
Fig4). If the noise environment is varying, the NLE
should be done at high frequency in time and in fre-
quency. In the opposite, the NLE could be estimated
each one hour or at a lower frequency with a coarse res-
olution in frequency. The next step for upgrading the
method is to estimate a level of stationarity and a level
of whiteness of the signal prior to NLE. This would en-
able the method to adapt both the shape and the size of
the neighborhood as well as the frequency and the time
sampling. The computation cost would be dramatically
reduced in case of stationary environment.

5 Conclusion

The estimation of the underwater noise level is a key
point for the acoustic monitoring of undersea activities.
One common estimation of the noise level is made by
averaging the past signal level in each frequency chan-
nel of the spectrogram. Despite easy to implement, this
methods suffers from being hard to tune to fast changing
environment. The method proposed here takes into ac-
count both the time-frequency vicinity and the statistic
properties of the current pixel neighborhood. The con-
sideration of the behavior the pixel neighborhood leads
to a 2D smoothing of the noise level. The estimation of
the probability distribution function of the weaker en-
ergetic pixels enables a low bias and variance noise level
estimation. Decimation and interpolation methods are
useful to reduce the computation time at a level com-
patible with the real-time processing. One perspective
of this work will be a study of the benefit of the interpo-
lation method with respect to the quality of the NLE.
Further works will involve a study a the stationarity and
the whiteness of the underwater noise to automatically
adapt the shape and the size of the neighborhood as well
as the frequency and time estimation sampling.
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