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The current paper presents theoretical and experimental results of vibration reduction of beams and plates 
using Acoustic Black Hole (ABH) effect. ABH is a passive technique which uses properties of wave propagation 
in beam or plates of varying thickness. It is based on related to gradual decrease of the thickness that leads to the 
decrease of phase and group velocity of flexural waves. Thus, under certain conditions, it can be shown that 
waves stop propagating and do not reflect back from the edges. However, the practical implementation of the 
above theory is rather cumbersome task from a technological standpoint because very thin structures should be 
manufactured. This is why the area of ABH should be treated additionally using a very thin layer of conventional 
damping materials. One dimensional and two dimensional configurations for the design of ABH are presented, 
adapted to the cases of beam and plates respectively. In the present study a brief theory of ABH and number of 
numerical and experimental results are given. A numerical approach able to evaluate the reflection and 
impedance matrices of a beam and consequently the point mobility is outlined. The experimental results 
encompass vibration reduction of elliptical plates. Moreover, a thermal ABH has been designed and tested using 
a beam made of a shape-memory polymer. As a result, all theoretical and experimental outcomes demonstrate 
excellent vibration reduction properties, thus, ABH could be used as an alternative approach to vibration 
mitigation. The advantages and limitations of this technique are discussed as well. 

1  Introduction 
Acoustic Black Hole (ABH) is a relatively new 

approach to damping structural vibrations of beams and 
plates. The theory of ABH is based on the fact that flexural 
waves in beams and plates slow down if their thickness 
decreases. This was successfully used by Mironov [1] to 
establish a power-law relationship between local thickness 
h and the distance from the edge x:  

 

mxxh ε=)(  (m ≥ 2),                                     (1) 
 

that provides an infinite travel time for a wave to reach the 
edge of a beam when the truncated thickness of the profile 
tends to zero. Under such circumstances the flexural waves 
stop propagating and the reflection coefficient becomes 
equal to zero. This is the basic principal of ABH as 
described by Mironov.  

 
 

 
 

Figure 1: 1-D ABH configuration, corresponding geometrical values are given in Table 1. 
 
Because of technological difficulties manufactured 

beams and plates with power law profiles always exhibit 
truncations at certain distance x0 from the coordinate origin, 
with a non-zero thickness (see e.g. Fig. 1). This is why a 
reflected wave by truncated edge always occurs, which 
partly cancels the effect of ABH and makes its practical 
application unattractive. However, a recently proposed 
approach has combined the use of power-law profile wedge 
(ABH) with a thin absorbing film covering fully or partially 
the treated area [2-4] leading to the so called ABH effect. 
Thus, the additional use of a conventional damping 

technique could overcome to some extent the unpleasant 
consequences of the truncated thickness profile. In more 
details, Krylov has used a geometrical acoustic approach to 
describe the propagation of flexural waves towards a free 
edge. The effect of a thin absorbing film was taken into 
account using the model of Ross-Ungar-Kerwin [5] for 
constrained layer damping in the special case of extensional 
damping (no constraining layer). As a result, the reflection 
coefficient was analytically expressed as simplified 
formulae for different power law profiles of order m=2, 3, 4 
and sinusoidal profile.  

x 

0 
x

)(xh  0h  fh  

ABHx  fx  2x  1x  0x  



 
Furthermore, on the basis of Krylov’s approach a 

number of experimental and numerical results have been 
reported in [6, 7]. They studied vibration reduction in 
elliptical plates using ABH pit placed in one of their focii. 
Instead of analytical description of the problem, a novel 
numerical approach has been applied [7]. The integration 
technique is based on state vector formalism which leads to 
Riccati equation for structural impedance, thus, calculating 
a system of ODE’s one could obtain the impedance matrix 
and, consequently, the matrix of reflection coefficients. 
Therefore, more precise evaluation of ABH effect can be 
achieved taking into account different geometrical 
discontinuities of structure and absorbing film.  

Besides the physical reduction of the thickness, the 
phase velocity could be decreased by modifying Young’s 
modulus of the material. Thus, if a beam or plate material 
has the property to reduce its modulus of elasticity as a 
function of spatial coordinate x then ABH can be designed 
even without decreasing the thickness. Thus, employing a 
material whose rigidity depends on spatial coordinates 
could be used as an alternative of the above mentioned two 
ABH approaches, designed by using a power-law profile 
and additional absorbing layer. 

The aim of this paper is to report recent numerical and 
experimental results of designing, modelling and 
manufacturing ABH as an effective passive vibration 
damper. For this purpose, in section 2 the basic principles 
of the numerical model of a 1-D ABH are presented. In 
section 3 brief notes are given regarding the modelling of 
thermo-mechanical ABH. The next section is devoted to 
numerical and experimental results obtained for beams, and 
elliptical, rectangular, and polygonal plates. In the last 
section a number of conclusions are withdrawn.  

2 Modelling of an ABH 
The varying thickness of non-uniform 1-D structure 

shown in Fig. 1 is given by Eq. (1) for m=2. Its ABH model 
is based on classical beam theory: Euler-Bernoulli 
hypothesis are assumed. The vibrational state of the beam 
can be described by four variables: the displacement w, the 
local slope θ, the shear force F and the bending moment M. 
Harmonic motion is supposed (time factor eiωt is assumed) 
and all variables depend only on the spatial coordinate x. In 
this context, the four variables can be grouped in a state 
vector: 

 

[ ]TMFw θ=X ,                                    (2) 
 
Eq. (2) is a compact formulation of the Euler-Bernoulli 

model [8, 9]. The state vector is composed of two kinematic 
and two force variables and the local impedance matrix Z 
can be defined as follows: 

 

[ ] [ ]TwjTMF θωZ= ,                           (3) 
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It can be shown that the impedance matrix Z is the 

solution of the Riccati equation:  
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In the above equation ρ1 is the material density of the beam, 
A1 is the area of the beam’s cross-section, E1 is the Young’s 
modulus of the beam, and I1 is the moment of inertia of the 
beam’s cross-section. The matrices H1, H2, H3 and H4 are 
characteristic matrices of the propagating medium. If 
impedance Z can be specified at one point of the medium, 
solving Eq. (4) gives the way to compute Z at any 
coordinate and to derive the response of the medium to any 
excitation force. 

Once the structural impedance Z is obtained, the 
reflection matrix R can be easily defined using a standard 
wave approach: 

 

[ ] [ ]1ZE3E4E2ZER ωω jj −−−= 1 ,                      (5) 
 

where the matrices E1, E2, E3 and E4 are the components of 
the eigenvector matrix E of the matrix N = -jH [8]. The 
scalar components, R1, R2, R3 and R4, of the reflection 
matrix represent the reflection of evanescent and 
propagating flexural waves in the beam and their coupling. 
R1 corresponds to propagating waves whereas R4 
corresponds to evanescent waves. The coupling between 
these two types of waves is characterised by R2 and R3.  

The complex bending stiffness of the compound beam 
(beam covered by an absorbing film) can be expressed 
using the bending stiffness of the beam only [5]: 
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where EI is the bending stiffness of the compound beam; 
E1I1 is the bending stiffness of the beam only; η is the loss 
factor of the compound beam; η1 loss factor of the beam’s 
material; η2 is the loss factor of the absorbing film’s 
material; E1 and E2 are Young’s moduli of beam’s and 
absorbing film’s materials, respectively; e2=E2/E1; δ is the 
thickness of the absorbing film; h is the local thickness of 
the beam; h2=δ/h.  

Furthermore, the above modelling of 1-D ABH could be 
easily extended to an elliptical plate [7]. The shape of 
elliptical plates induces a focalisation of the waves towards 
one of its focii if the excitation is applied in the other focus. 
This geometrical focalisation phenomenon is used for 
studying ABH in elliptical plates. As was mentioned above, 
a 1-D ABH is a non-uniform beam having a power-law 
profile. The corresponding 2-D ABH configuration consists 



 
of an axisymmetric pit which thickness gradually decreases 
to (theoretically) zero towards its centre according to Eq. 
(1), see Fig. 2. Thus, considering an inner ABH placed in 
one of the focii, all the generated waves will reach it either 
directly or after reflections from the free edges. The waves 

excited in this way could be considered as vibrational rays 
starting from the driving focus and ending to the damped 
focus, see Fig. 2. Consequently, the 1-D ABH model can be 
considered as a phenomenological model for the complex 
2-D elliptical configuration.  

 

Figure 2: Model of elliptical plate flexural vibrations approximated by 1-D vibrational rays. 
 

3 Thermal modelling of an ABH 
ABH phenomenon relies on gradually decreasing phase 

velocity and its efficiency is improved if the material loss 
factor increases. These two factors could be modelled not 
only by decreasing the thickness of the beam and using 

additional absorbing layer but also by employing a shape 
memory polymer that is subjected to an appropriate 
temperature gradient. Using the temperature profile the 
storage and loss moduli could be modified in order to use 
the numerical approach described above for studying 
thermal ABH. 

 

 
 

Figure 3: Young’s moduli as a function of temperature and frequency: (a) - storage modulus E’ and (b) – loss modulus E”. 
 

 
Dynamic mechanical analysis of the polymer material 

under consideration has been conducted using BOSE 
Electro Force equipment [10]. As a result, the storage 
modulus E’ and loss modulus E” were measured as a 
function of temperature for different frequencies of a cyclic 
harmonic load [10]. In order to obtain Young’s modulus as 
a function of temperature and frequency, the time-

temperature correspondence that characterises the 
behaviour of polymer materials was used. This relation 
allows the measured material properties for a short 
frequency interval at different temperatures to be replaced 
by a single frequency curve at a reference temperature. The 
corresponding shift factor aT is defined by Williams, Landel 
and Ferry (WLF) equation [11]: 
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where T is the temperature at a given moment, T0 = 45 °C is 
the reference temperature, C1 = 18.30 and C2 = 70.54 are 
constants characterising the polymer under consideration. 
Thus, using the master curves and WLF equation the 
storage E’ and loss E” moduli can be specified as a function 
of temperature T and frequency f (see Fig. 3). 

 
),("),('),( fxjEfxEfxE +=                       (8) 

 
Once the Young’s modulus is expressed as a function of 

temperature and frequency it can be further transformed to a 
function of space coordinate and frequency using the 
temperature profiles measured at each experiment. Thus, for 
the numerical simulations of a thermal ABH the specified 
varying Young’s modulus E(x,f) from Eq. (8) replaces the 
constant Young’s modulus E used for the mechanical 
design of an ABH.   

4 Results 

4.1 Illustration of ABH effect in a beam structure 

The efficiency of ABH is estimated by the reflection 
matrix R, which can be computed from impedance matrix 
Z, as shown in Eq. (5). This latter is the solution of Eq. (4), 
computed with boundary conditions Z(x0)=0, describing the 
fact that the end of the beam at x=x0 is free. Numerical 
simulations are presented for a beam defined by Fig. 1 and 
Table 1. 

 
Geometrical characteristics, (m) 

x0 = -0.01             hf = -0.0015 
xABH = -0.06          b = 0.0015 

xf = -0.08              m = 2 
Material characteristics 

Beam Absorbing film 
E1 = 70 GPa E2 = 0.5 GPa 

Ρ1 = 2700 kg/m3 ρ2 = 950 kg/m3 
η1 = 0.005 η2 = 0.05 

 
Table 1: Geometrical and material characteristics of the 

beam under consideration 
 

In Fig. 4 the reflection coefficient R1 is presented as a 
function of frequency in order to illustrate ABH effect. It is 
shown that reflection coefficient R1 for a beam with ABH 
covered by 700 µm (solid curve) is about 20 % reduced at 
10 kHz, whereas for beam with ABH only without any 
absorbing film (dashed curve) this reduction is only 7 % 
and for a uniform beam covered by 700 µm absorbing film 
is even smaller – around 4 %. Therefore, ABH effect leads 
to much more decrease of reflected waves compared to any 
of the individual treatment of the beam – ABH only or 
damping treatment only. Note that the oscillations of 
reflection coefficient decrease and their periodicity 
becomes larger when the frequency is increased. Therefore, 
at theoretical frequencies close to infinity the reflection 
coefficient does not exhibit any oscillations. The origin of 

these oscillations might be due to the sharpness and length 
of the profile. 

Figure 4: Reflection coefficient for uniform beam (dash-
dotted curve), beam with ABH (dashed curve), and beam 

with ABH covered by absorbing film (solid curve). 

4.2 Applying ABH to elliptical plates 

The models that were tested are as follows: elliptical 
plate with ABH and without ABH, elliptical plate with disk 
of resin placed at the location of the ABH and elliptical 
plate completely covered by resin. The equipment used was 
a Polytech Vibrometer Scanning Head – OFV 056, an 
impedance head Bruel&Kjaer type 8001, a Bruel&Kjaer 
Conditioning Amplifier, an Amplifier LM 3886, and a 
Shaker LDS V201. The plates were hanged vertically 
(‘free-free’ boundary conditions) and excited by the shaker 
using a periodic chirp signal. A number of point mobilities 
and velocity fields were measured.  

 

 
 

Figure 5: Velocity fields of an elliptical plate without 
ABH – above, and with ABH – below. 

 
Fig. 5 shows velocity fields of plates without ABH (a) 

and with ABH (b) at 7613 Hz. The driving force was 
applied to the left focus whereas the ABH is in the right 
one. It can be seen that the spatial patterns of the plate 
without ABH are rather symmetric and equally distributed 
with some small increases in the area of the right focus, 



 
whereas those of the plate with ABH exhibit a 
concentration of the velocity field in the area of ABH. This 
concentrated activity is due to both ABH affect and 
focalisation effect. Thus, the rest of the plate is quite silent   

 
Figure 6: Measured point mobility of the elliptical plate 
with and without ABH, and with and without damping. 

 
compared to the plate without ABH. Note that due to the 
focalisation effect treating the right focus of the plate with 
absorbing film reduces plate vibrations as well. However, 
this decrease is much smaller compared to the reduction of 
the plate with ABH and this can be seen in the measured 
point mobility functions.  

The graphs in Fig. 6 represent point mobilities measured 
at the left focus of the plate. The measured point mobility of 
the plate with ABH and without an absorbing film is 
compared to the corresponding point mobility of the plate 
covered by an absorbing film. Moreover, the point mobility 
of the plate without ABH is presented as well. Similarly to 
Fig. 4, the point mobility of the plate with ABH and 
covered by different absorbing films exhibit the largest 
reduction. In the range above 2 kHz, the point mobility of 
the plate with ABH covered by absorbing film 2 was 
reduced more than 15 dB, compared to the mobility of a 
plate without ABH. Absorbing film 1 has smaller loss 
factor compared to absorbing film 2 and respectively its 
point mobility is larger. 

4.3 Vibration damping using a thermal ABH effect 

A polymer, vertical, uniform, cantilever beam has been 
tested in order to demonstrate the thermal ABH effect. The 
polymer beam was firmly clamped in the vertical plane, see 
Fig. 7. The impact excitation was initiated by a hammer 
PCB 086D80, thus, providing a broadband excitation. The 
response was measured by a laser vibrometer head together 
with LMS Scadas III acquisition system including Test Lab 
software. The temperature gradient was introduced by a 
nickel-chromium resistance wire under high electrical 
current. The temperature of the beam was measured using 
an infrared camera. A thermal image and its corresponding 
temperature profile can be seen in Fig. 7. as well. 

 

 

 
Figure 7: Schematic of the experimental setup. 

 
 
Fig. 8 shows the measured temperature profiles and 

corresponding point impedances of the uniform beam under 
test. The vibration behaviour of the sample without using a 
thermal load has clear resonance peaks which become 
drastically reduced once a temperature gradient (i) is 
applied. Furthermore, it is clearly noticed in Fig. 8 (c) that 
for the higher temperature profile (ii) the resonance 
behaviour of the uniform beam is diminished. This confirms 
that an ABH can be designed controlling the Young’s 

modulus by a temperature gradient even without 
mechanical decrease of the beam’s thickness. 

Rising the temperature, the storage modulus E’ 
decreases whereas the loss modulus E” increases. 
Furthermore, the analysis shows that phase velocity does 
not change significantly whereas the loss factor of the beam 
increases rapidly with the temperature. These characteristics 
are in contrast to pure mechanically designed ABH where 
the thickness decreases and reduces the phase velocity and 
the wavelength. Therefore, it can be concluded that thermal 



 
ABH reduces structural vibrations of the polymer material 
mainly due to the increase of the loss factor of the structure 
whereas a mechanical ABH due to the decrease of the phase 
velocity of propagating waves. 

 

Figure 8: Measured temperature profiles (a) and point 
impedances (b) corresponding to profile (i) and (c) 

corresponding to profile (ii). 
 
The different way of damping of vibrational energy 

between thermally and mechanically designed ABHs 
defines different frequency regions of their application. For 
ABH with decreasing thickness vibration reduction is rising 
at high frequencies [2-4,] whereas for thermal ABH it is 
relatively independent from the frequency except at very 
low frequencies. In fact, using certain materials with 
appropriate characteristics a thermal ABH could be 
designed such that structural vibration reduction will be due 
to both the decrease of phase velocity and increase of the 
material loss factor in equal parts. Thus, the vibration 
damping using thermal ABH could be further improved 
extending the frequency range of application and 
overcoming the required, sophisticated thickness profile. 

4 Conclusions 
In the present paper, the recent progress in modelling 

and designing a new alternative approach to damping 
structural vibrations in beams and plates has been reported. 
It was outlined the theoretical fundament of ABH and the 
opportunity to study numerically this phenomenon in 1-D 
structures. The experimental part contains measurements on 
elliptical plates. All of them demonstrated significant 
reduction of resonant peaks of measured point mobilities. 
This is due to the focalisation of propagation waves towards 
ABH and to the ABH effect itself. The thermal modelling 
of ABH showed that the measured vibration reduction is 
mainly due to the increased loss factor of the material rather 
then due to the decrease of phase velocity as it is in 
mechanically designed ABH. Nevertheless, a thermal ABH 
could suppress vibrations even better than mechanical ABH 

in event that a material with appropriate characteristics 
could be found. Finally, in the light of all reported results, it 
can be concluded that the application of ABH as an 
alternative method of damping structural vibrations 
becomes a realistic opportunity. 
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