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Extended angular spectrum method for calculation of higher harmonics
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Ultrasound imaging in the superharmonics band is getting important in the ultrasound community, since
all the advantages of the second harmonic imaging modality are further increased at higher harmonics
(3rd, 4th, ...). Then, a fast, reliable and relatively accurate modelling and estimation tool of ultrasound
field at higher harmonics is of clear interest. Different numerical solutions (in time or frequency domain)
of KZK equation are mostly used. Although the KZK simulators are largely used to understand the
nonlinear propagation, they are not appropriated to simulate steered beams, propagating through inho-
mogeneous media. Moreover, simulations based on KZK equation are time consuming. We propose an
alternative method by solving the Westervelt equation based on the Angular Spectrum Method (ASM).
The idea consists in separating the equation in n equations (n is number of considered harmonics). For
each harmonic component, a nonlinear wave equation is deduced, where the n-th harmonic depends on
the previously calculated harmonics. Since the solution of the nonlinear wave equation is a known ma-
thematical problem, the calculation is fairly simple. Coordinate transformation can be used to simulate
steered propagation. Furthermore, modelling the solution of the nonlinear equation in the frequency do-
main (hence the name angular spectrum method) facilitates the introduction of the attenuation in the
model. The solution of the nonlinear wave equation was implemented in Matlab software. The calcula-
tion of ultrasound field up to third harmonic showed good agreement with experimental measurements
performed in a water tank. The main beam width and side lobe levels differ between simulation and
measurements by lessthan 5%. The calculation of the pressure field was about 15 times faster than the
KZK solution.

1 Introduction

Modeling of the nonlinear propagation of the ultra-
sound wave is of great interest in research community,
since it gives valuable insight in the prediction of the
behavior of the ultrasound pressure field at higher har-
monics. Simulators of nonlinear propagation are usually
based on KZK equation [1, 2]. The equation accounts
for the thermo viscous absorption and nonlinearity of
the medium and diffraction due to the finite size of the
transducer. Using a paraaxial approximation, Aanonsen
et al. [3] presented a spectral domain calculation method
for solution of KZK equation. Lee and Hamilton [4] pre-
sented a time domain method for circular symmetric
transducers. Christopher [5] presented a method where
the diffraction and attenuation substep of the propaga-
tion is achieved in time domain, while nonlinear substep
is modeled as spectral solution of lossless Burgers equa-
tion. This approach is not limited by parabolic approxi-
mation and allows propagation through multiple layers.
Similar method has been presented also in Ref. [6].

All the aforementioned method use stepping me-
thods. The propagation from source to region of interest
is broken in to smaller steps. The effects of nonlinear
propagation (absorption, nonlinearity of medium and

diffraction) are considered to be independent on small
distance. As such they can calculated independently.
This approach is computationally very long. Even with
the most modern computers the simulation can take up
to an hour. Recently [7, 8] have presented a fully angular
spectrum method for estimation of the second harmonic.
The method is based on the modeling of the diffraction
in optics [9]. By doing so there is no need to calculate all
the intermediate steps from source to region of interest.
This approach is indeed needed, since second harmonic
imaging provides several advantages over fundamental
[10–12].

Lately also super harmonics (third, fourth, fifth and
so forth) are being investigated for possibility of imaging
and ultrasound diagnosis. This is possible with the new
transducer designs [13]. It has been already shown to
improve ultrasound contrast harmonics imaging [14–16]
and further enhance tissue harmonic imaging [17]. These
findings drive the need for relatively accurate, fast and
reliable simulation of the ultrasound field at super har-
monics.

In this paper we present an extension of angular
spectrum method for calculation up to 3−th harmonic.
Reader will find it very easy to extend the method even
in the higher harmonics. Fig.1 is presenting the general
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Fig. 1: Propagation of a plane from z0 to z1

idea behind modeling nonlinear propagation with angu-
lar spectrum method. Consider that X and Y are eleva-
tion and transversal coordinates respectively and that
wave is propagating in positive Z direction. If wave is
know at some distance z0, then calculation of z1 is simple
matter of (1) calculating angular spectrum using Fou-
rier transform (2) multiplying the obtained spectrum
with phase factor and (3) performing an inverse Fourier
transform to return back to time domain. With this we
have achieved that the calculation of all the interme-
diate steps are avoided and as such the computation is
largely reduced.

We begin first with writing the three most impor-
tant equations of wave propagation. The reader might
recognize them as equation of continuity, motion and
state. Next a homogeneous wave equation is developed
and later extend it into a set of inhomogeneous wave
equation. In Sec. the implementation of the solutions of
the harmonics is presented. Later we will show the re-
sults and compare them to the measurements. At the
end we finish with discussion and conclusion.

2 Theory

Consider that the wave is propagating in the me-
dium which is unbounded, homogeneous and inviscid.
Than an infinitesimal element dV = dx dy dz is regar-
ded as a continuous medium and small enough that all
acoustic variables (density ρ, pressure p and tempera-
ture T ) are uniformly distributed. Further more me-
dium is considered as lossless. The compression or ex-
pansion of the medium caused by disturbance produces
increase or decrease in density ρ compared to equili-
brium ρ0. The changes of density in dV are related to
the traveling wave with by

∂ρ

∂t
+ ∇ · (ρ~u) = 0 (1)

where ∇ is a Laplace operator and ~u particle velocity.
Equation (1) shows that density change occurs with the
passage of the wave disturbance and after the wave has
passed the density returns to its steady state (e.g., ρ0).

If the element dV has a mass dm = ρ dV , the applied
disturbance or pressure will move the element according
to

ρ
∂~u

∂t
= −∇ p (2)

From (2) it is clear that all the disturbances are due
to the external forcing pressure p and that there are

no vortices (irrational wave flow). Equation (1)-(2) are
know as the Euler equations[18].

To connect all the acoustic quantities one more equa-
tion is needed. In the case of perfect gas density, pressure
P and temperature T are defined by P = ρ r T , where r
is the gas constant. A much simpler relation is obtained
if restriction is made to thermodynamical process. For
ultrasound propagation this is a valid assumption. When
the medium, during passage of the ultrasound wave ex-
hibits no temperature change the process is called iso-
thermal. The relation between pressure and density is
then P/P0 = ρ/ρ0. For most cases, propagation of the
ultrasound wave is adiabatic and reversible. This means
that there is some conversion of energy in to heat, but
the entropy remains constant. Then, adiabatic law for
perfect gas is

P

P0
=

( ρ

ρ0

)γ

(3)

where γ is empirically determined constant (ratio of spe-
cific heats). Now the speed with which the wave is sprea-
ding in the medium is defined as

c2 =
(∂P

∂ρ

)

0
(4)

where subscript 0 defines constant entropy. Using (3)
and taking equilibrium values, speed of the wave is

c2
0 = γ

P0

ρ0
(5)

Equations (1)-(3) and the speed of ultrasound wave,
give a valid description of propagation for small acoustic
pressure.

2.1 Wave Equation

For practical reasons (1)-(3) can be combined in to
one single partial differential equation. This is done by
taking the derivative of (1)

∂ρ

∂t
+ ∇ · (ρ~u) = 0

/

·
∂

∂t
(6)

to obtain
∂2ρ

∂t2
+ ∇ · (ρ

∂~u

∂t
) = 0 (7)

Next, consider the divergence of (2)

ρ
∂~u

∂t
= −∇ p

/

· ∇ (8)

by writing ∇ · ∇ = ∇2, (8) gives

∇
(

ρ
∂~u

∂t

)

= −∇2 p (9)

by noting that the left side of (9) in equal to second term
on the left side of (7) this two terms can be eliminated.
Using (4) to express density in terms of pressure and
speed of sound one obtains

∇2p −
1

c2
0

∂2p

∂t2
= 0 (10)

where speed of sound was evaluated at equilibrium va-
lues of density and pressure. This is the linear lossless
wave equation for the propagation of ultrasound wave
with thermodynamical speed c0.



2.2 Nonlinear wave equation

In section 2.1 we considered propagation where non-
linear effects can be disregarded. This is usually true
for perfect gases. How ever for propagation of the ul-
trasound in fluids and tissue nonlinear effects must be
considered since pressure density relation of the medium
is not a straight forward equation (Equation (3)). Then
consideration of the equation of state demands the ex-
pansion in Talyor series [19–21]

p− p0 =

(

∂p

∂ρ

)

(ρ− ρ0) +

(

∂2p

∂ρ2

)

(ρ − ρ0)
2

2
+ · · · (11)

Since Talyor expansion series is truncated after the se-
cond term this has second order accuracy. By using (4)
and defining

A = c2
0

ρ0

p0
, B =

ρ2
0

p0

(

∂2p

∂ρ2

)

(12)

Equation (11) can be written as

p = p0 + A
ρ − ρ0

ρ
+

B

2

(

ρ − ρ0

ρ

)2

(13)

the quantities A and B are called nonlinearity parame-
ters and define a nonlinearity coefficient β as

β = 1 +
B

2A
(14)

Equation of motion for fluids is written as

ρ
∂~u

∂t
+ ∇(p + L) = 0 (15)

where

L =
ρ0

2
~u2 −

1

2ρ0c2
0

(p)2 (16)

is called the Langrangian density[22, 23]. Equation of
continuity when combined with (11) gives

∂(p + L)

∂t
+ ρ0c

2
0∇ · ~u =

β

ρ0c4
0

∂(p)2

∂t
+ 2

∂L

∂t
(17)

Noting that propagation of ultrasound wave produces
no vortices (irrotational flow)

∇× ~u = 0 (18)

combining (15) and (17) and linearizing the higher or-
der terms (cubic and higher) we obtain a Kuznetsov
equation[1]

∇2p −
1

c2
0

∂2p

∂t2
= −

β

ρ0c4
0

∂2p2

∂t2
−

(

∇2 +
1

c2
0

∂2

∂t2

)

L (19)

which is exact to the second order equation and is the
same as Eq.9 in [22] for non viscous case. In [23] and
[22] it was shown that L accounts for local nonlinear
effects and no cumulative effects. Because of that it is a
valid assumption to neglect Langrangian density L = 0,
hence (19) reduces to the Westervelt equation [24]

∇2p −
1

c2
0

∂2p

∂t2
= −

β

ρ0c4
0

∂2p2

∂t2
(20)

Comparing (20) to (10) it can be noticed that the only
difference is the right side. Since on the right side of (20)
we have a forcing term, this is known as nonlinear wave
equation and it is going to be in further sections as a
driving force behind determining the higher harmonics
of the ultrasound wave.

3 Method

Let the pressure with fundamental transmission fre-
quency f0 at the surface of the transducer z = z0 be

p(t, x, y, |z0) = ℜ{P0 expı·2πf0·t} (21)

where x and y are the lateral and elevation coordinates
respectively. Then the two Fourier transformation pairs
can be defined as [25]

P (fx, fy, f0|z) =
1

2π

∫∫∫

p(x, y, t|z)

exp−ı 2π

c0
(fx·x+fy ·y+f0·c0t) dxdydt (22)

p(x, y, t|z) =

∫∫∫

P (fx, fy, f |z)

expı 2π

c0
(fx·x+fy·y+f0·c0t) dfxdfydf (23)

where fx and fy are the spatial frequencies. A shorter

notation will be used further on, ~f = (fx, fy, f).

3.1 Solution of linear wave equation

When β = 0, nonlinear effects during propagation
of the ultrasound wave are disregarded. The ultrasound
wave propagation is then described by (10). Inserting
(21) in (10) and taking the Fourier Transform yields

(∇2
⊥

+ k(~f)2)P 1 = 0 (24)

where k(~f) = 2π
c0

√

f2 − f2
x − f2

y is the wave vector. The

fundamental pressure field P 1 at an arbitrary distance
z = z1 is then obtained by multiplying transmitted field
P 0 with a kernel function Hp and taking the inverse
Fourier transform

p(x, y, t, z1) = F−1
{

P 0 · exp(−ık(~f)(z1−z0))
}

(25)

for the linear field kernel function is a simple phase fac-

tor exp(−ık(~f)(z1−z0)). This is a linear solution of the pro-
pagating ultrasound wave, since no higher harmonics are
predicted by (25).

3.2 Perturbation method for the solu-

tion of the nonlinear wave equation

To show how higher harmonics (second, third and so
forth) can be deduced from (20) we will closely follow
the solution proposed in section 16.4 [26] (note that the
author uses a scaled acoustic pressure q = p/(ρ0c

2
0) ).

We assume that the generated harmonics are sequential,
meaning that if n-th harmonic is generated than also
n− 1,n− 2. . .,1 are generated. Also we assume that the
relation between successive harmonics is

p1 > p2 > p3 > · · · pn−1 > pn (26)

Next, let the total pressure be sum of fundamental p1,
second harmonic p2 and third harmonic p3

p = p1 + p2 + p3 (27)

By inserting (27) on the right side of (20) and prefor-
ming the square operation gives p2

1 + 2(p1p2 + p2p3 +



p1p3)+p2
2+p2

3. By using the condition from (26) (p3 <<
p2 << p1), higher order terms can be dropped. This
leaves (p2

1 + 2p1p2). The obtained NPDE is

∇2p −
1

c2
0

∂2p

∂t2
= −

β

ρ0c4
0

∂(p2
1 + 2p1p2)

∂t2
(28)

The solution of (28) is found by first decomposing it into
one homogeneous part and two non homogeneous parts

∇2p −
1

c2
0

∂2p

∂t2
= 0 (29)

∇2p −
1

c2
0

∂2p

∂t2
= −

β

ρ0c4
0

∂2p2
1

∂t2
(30)

∇2p −
1

c2
0

∂2p

∂t2
= −

β

ρ0c4
0

∂2(2p1p2)

∂t2
(31)

It can be noticed that (29) is same as (10), so this is fun-
damental pressure field of ultrasound wave. The equa-
tion (30) is then the second harmonic field, which has
been previously shown in [7, 8, 27]. It was reported
by [28–30] that (31) presents solution for the third har-
monic of the ultrasound field p3. Further more it is clear
that third harmonic can be computed when fundamen-
tal p1 and second harmonic p2 are known.

3.3 Solution of the nonlinear wave equa-

tion

To find the solution of the nonlinear wave equation
for the second harmonic begin with taking the Fourier
transform of the (30) to obtain

(∇2 + 4k(~f)2)P 2 =
−ı2βk2(~f)

ρ0c2
0

P 2
1 (32)

Previous works like [7, 8, 27] haven shown that the am-
plitude spectrum of the generated second harmonic P 2

can be expressed as

P 2(
~f |z1) =

−iβk(~f)

2ρ0c2
0

∫ z1

z0

P 1(
~f |z1) ⊛ P 1(

~f |z1)·

exp−ık(~f)(z1−z0) dz (33)

Equation (33) shows that the second harmonic is ob-
tained by multiplying the phase factor with the auto
convolution of the amplitude spectrum of the fundamen-
tal component and integrating from z0 until z1.

To obtain the third harmonic, the same procedure
can be applied on (31) only taking care that pressure
fields P 1 and P 2 are used. In this manner the formula-
tion of the third harmonic is

(∇2
⊥

+ 9k(~f)2)P 3 =
3βk(~f)

16ρ0c2
0

P 2 · P 1 (34)

The third harmonic at z = z1, calculated by (34) has a
similar solution as (33)

P 3(
~f |z1) =

−i3βk

16ρ0c2
0

∫ z1

z0

P 2(
~f |z1) ⊛ P 1(

~f |z1)·

exp−ik(~f)(z1−z0) dz (35)

The generated third harmonic is viewed as a convolu-
tion of the amplitude spectrum of the fundamental and
the second harmonic. The amplitude spectrum of the
fundamental is given by the Fourier transform of (25),
while the second harmonic is calculated using (33).

4 Measurements

To test the method a focalized phase array transdu-
cer (FPA), with 64 elements and 2.5 MHz center fre-
quency was mounted on a side of a water-filled tank.
The transducer geometry was as follows : each element
was 12.5 mm in height and 230µm width. Spacing bet-
ween elements was kerf = 80 µm. The focal spot of FPA
transdeucer was zFPA = 70 mm. The transducers was
attached to a fully programmable ultrasound scanner
(Fig. 2).

Fig. 2: Measurement setup. The hydrophone is placed
in focal spot of the each transducer surface. Lateral

profile was measured with a 3D xyz system

5 Results

The solutions of Eq.(25), (33) and (35) were im-
plemented in Matlab and compared to the experimen-
tal measurements. The parameters of the medium were
those corresponding to the water : nonlinearity parame-
ter β = 3.5, density ρ0 = 998.2 kg/m3, speed of sound
c0 = 1487.3 m/s.

The FPA transducer was excited by a 3 cycles
long signal with Gaussian envelope and frequency
f0 = 2.5 MHz. The measured and simulated signals
are compared on Fig. 3. The acquired pulse was de-
composed in to first three harmonics (Fig.3(b), Fig.3(c)
and Fig.3(d)). ASM presents some over estimation of
the amplitude of the harmonics while phase is in good
agreement with measurements. Also notices some round
off errors before and after actual pulse, predicted by
ASM. These errors come from the aliasing property
of inverse Fourier Transform, since angular spectrum
method, performs all the calculations in the frequency
domain. This error could be overcome by applying an
envelope of the signal.

6 Discussion

We have presented a model for estimating the first
three harmonics, using the extended nonlinear wave
equation. By means of the perturbation method, a
simple wave equation was further developed to predict,
in addition to fundamental harmonic, also the second
and the third harmonic. The measured and simulated
time traces from Fig. 3 show a very good similarity. The
phase is in excellent agreement. The amplitude of the
fundamental pulse is good evaluated. Second harmonic



−2 −1 0 1 2
−400

−300

−200

−100

0

100

200

300

400

t [µ s]

P
 [

k
P

a
]

 

 
Measurement
ASM

(a)

−2 −1 0 1 2
−400

−300

−200

−100

0

100

200

300

400

t [µ s]

P
 [

k
P

a
]

 

 
Measurement
ASM

(b)

−2 −1 0 1 2
−50

0

50

t [µ s]

P
 [

k
P

a
]

 

 
Measurement
ASM

(c)

−2 −1 0 1 2
−8

−6

−4

−2

0

2

4

6

8

t [µ s]

P
 [

k
P

a
]

 

 
Measurement
ASM

(d)

Fig. 3: Comparison between measurements and simulation. Full line presents ASM method results, while dashed line
is the measurements. On Fig.3(a) is the acquired pulse, while on the Fig.3(b), Fig.3(c) and Fig.3(d) are the

fundamental, second and third harmonic respectively. Note that there is some over estimation of the harmonics,
while phase of each harmonic is good predicted. Also note that amplitude scale is not the same for all harmonics,

meaning that assumption Eq. (26) is fully acceptable

amplitude is overestimated by 5 kPa while third har-
monic amplitude by 3 kPa. It should be noted that this
error is inherited from truncation order of the Taylor
series expansion of the equation of state. On a desktop
PC, with dual core Intel(R) processor with CPU clock
3 GHz and 2 GB of RAM memory, the whole fundamen-
tal, second and third harmonic field is were evaluated in
less than 3 minutes. The accuracy and the speed, with
which this was done, suggest that this approach could be
a powerful tool for predicting ultrasound field at higher
harmonics.
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