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Wave propagation in soft and hard biological tissues (such as bones) generates ultrasound signals forming 

packages with different time and frequency signatures. Correlating the complex physical processes involved with 

these packages means separating the useful information from parasitic one (e.g. electronic noise). This study 

proposes a way to increase the ultrasound signals resolution, aiming at simultaneously analyzing the time and 

frequency parameters, by using a wavelet decomposition of the signals. We also discuss ways to generate suitable 

transmitted signals correlated with the parameters of the test system. This deconvolution method based on 

wavelets enables to directly determine the transfer function of the scatterer, and gives improved results compared 

to more classical schemes. 

 
1  Introduction 
 

Medical imaging is the main field in which ultrasonic 

computed tomography (UCT) is applied [1]. UCT, which 

involves the linearisation of the inverse problem of acoustic 

wave propagation, enables one to find specific response to 

the problem of soft tissue imaging (dedicated to breast 

cancer detection [2]) and to the problem of bone imaging 

(dedicated to bone diseases, infections and cancers [3]). The 

difficulties raised are somewhat different in the sense that in 

soft tissues, the very weak fluctuations that have to be 

quantified suffer of their very low values. This poor 

echogenic index generally induces low detection 

probability, for instance in the case of large diffuse mass. In 

addition, invasive lesions that should not be missed may 

show a millimetric size. In bone imaging, the difficulties are 

bound with the very high contrast, which strongly alters the 

propagation of the ultrasonic waves. There, the solutions 

consist in optimally assess these non-linear effects in an 

iterative approach that performs local linearization. 
For both domains the wave propagation associated with 

some physical phenomena makes it necessary to change the 

methods used for the acquisition of the ultrasonic signals. 

To overcome these problems, the use of low ultrasound 

frequencies (≤ 3 MHz) provides an effective possible 

alternative [4]: when the frequency of the transmitted wave 

decreases, certain zones turn out to be more homogeneous 

and the attenuation is also reduced. However, if the depth of 

the field increases, the resolution of the signals and hence 

that of the reconstructed images is bound to decrease. Even 

with low frequencies, the complexity of the wave 

propagation process generates extremely complex acoustic 

signals consisting of several packets with different 

signatures, which it is often difficult to analyze (in terms of 

the wavepaths, volume, guided or surface waves, and 

attenuation) and to interpret. 

To improve the quality of the signals used either to 

reconstruct a tomographic image or to characterize the 

physical processes involved, or both, it is interesting to 

focus on signal processing. More in particular, in order to 

obtain a better quantification while extracting 

characterization information from the received signal, we 

tried several approaches: filtering, spectrum analysis and a 

method involving the deconvolution of the signals using a 

characteristic transfer function of the experimental device 

[5]. The latter operation improves the information in the 

high and low frequency ranges. That’s why we use an 
alternative method based on a multi-scale decomposition 

procedure of the signals, enabling to process all the 

information available in terms of frequency and time. 

However, this analysis alone does not suffice to optimize 

the signal processing: the acoustic signature of the 

transmitted wave, i.e. the incident wave reaching the 

scatterer, also has to match some or all of the wavelets’ 

mathematical properties. We then propose solutions to 

achieve this goal. Then, we show through simulation and 

experimental results the usefulness of this "wavelet-based 

deconvolution" method, in comparison with a more 

conventional signal processing approach. 

 

2  Acoustical statements 
 

The frequencies used here (1 MHz) where performing 

UCT on strongly contrasted materials (tumors or bones) are 

therefore lower than those formerly used in practice (for 

clinical and other purposes, > 3 MHz). This increases the 

wavelength of the transmitted wave and decreases the 

quantity of energy lost during the propagation of the wave. 

It also increases the depth of penetration of the wave into 

the medium. The scatterer analyzed will be then taken to 

consist in a quasi-homogeneous medium. But this reduces 

the accuracy of the separating power and finally the 

resolution decreases: it is more difficult on the tomogram to 

identify details such as boundaries. The propagation of the 

waves will result in signals with specific characteristics, 

which will depend on the pathways taken and on the mode 

of data acquisition (reflection, transmission or diffraction) 

used. In the case of objects showing a strong contrast with 
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the background, a large proportion of the incident energy is 

scattered (or simply reflected) and the transmitted 

proportion is refracted (deviated) after modal conversion at 

the interface between the water/scatterer, at various angles. 

The diffraction will not be isotropic. The various wave 

packets constituting the signals depend decisively on the 

pathway taken and on the nature of the waves 

(compressional or shear waves, surface or guided waves). 

The idea of using a specific signal processing method is to 

extract as much information as possible about these various 

packets by analyzing the time and frequency signatures of 

the signals. It is therefore necessary to decompose these 

signals so as to identify their constituents. 

 

3 Material and methods 
 
3.1. Test bench 

 

The benches we generally develop consist in a main 

symmetrical arm carrying two aligned transducer, which can 

be moved linearly or turned. These transducers and the 

analyzed object are then immerged into a water tank. Figure 

1 shows a synoptic of this experimental setup. 

 

 

 

 

 

 

 

 

 
 

Figure 1: Experimental setup 

 
The electro-acoustic device and the transducers 

therefore serve as a continuous, linear stationary causal 

filter. The input and output signals are connected by 

convolution: 
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where e(t) is the electric signal conveyed to the transmitter, 

hT(t) is the pulse response of the two transducers (which is 

assumed to be known and to be identical), and hM(t) is the 

pulse response of the scatterer, which we want to determine.  

When the input x(t) cannot be reasonably approximated 

by a Dirac function, the function hM(t) has to be deduced 

from the output measurement s(t) and then, we must deal 

with deconvolution. 

 

3.2. Wavelet based deconvolution 

 

Wavelet transformation makes it possible to process a 

signal and to analyze the very local, and much more global, 

frequency and time parameters. Based on this 

transformation, a time versus scale diagram can be obtained, 

giving the evolution of the frequencies with time. Like time-

scale processing, wavelet decomposition lends itself very 

well to detecting and discriminating between signals during 

the data pre-processing phase as well as the filtering step 

carried out during an image reconstruction phase. 

In most of the cases, e(t) in Figure 1 is comparable to a unit 

impulse function (i.e. a Dirac delta function), the input will 

be equal to the transducer’s response )(thx(t)
T

≈ .  

There, let us now generate a wave corresponding to a 

transmitted signal x(t) having suitable properties for specific 

processing method, such as wavelet analysis.  

If x(t) is a wavelet denoted ( )t
J

ϕ  which is centered on 

the (dilation) scale denoted J (J ∈ Z) [6], we have: 
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Time-scale decomposition of the signal s(t) on a dyadic 

grid makes it possible to calculate the coefficients Xj: 
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where ( )t
j,0

φ  is a wavelet centered on the scale j ( Zj∈ ).  

The properties of the wavelet decomposition (an 

orthogonal decomposition in this case) are such that the 

coefficients Xj nullify everywhere except for j = J: 

 

( )
( )







≠

==δ⊗
=

J j  if                          0

J j  if  (t)h  t )  (h
  tX

MM

j
       (4) 

 

If it is possible to process the transfer function of the 

experimental device in such a way that it is identical to a 

wavelet function, this method directly yields to the response 

of the scatterer hM(t), without any further filtering effects. 

 

3.3. Numerical transmitter signal generation 

 

Experimentally, it is not easy to test the method 

described in 3.2, because designing the numerical 

transmitted signal x(t) in wavelets shapes makes it necessary 

to program an initial function e(t), which has to be filtered 

by the transducer to obtain a specific wavelet. In our tests, 

we used a Jaffard wavelet [7] (see Figure 3 for an overview 

of its temporal and spectral shapes), for its convenient 

numerical calculation properties. The scale J selected here 

is –5 due to the frequency sampling of 40 MHz, and the 

nominal frequency of the transducer of 1 MHz.  

During our experiments, we tested several approaches 

with various levels of success, such as those based on direct 

deconvolution. Manual determination, which consists in 

iteratively producing the signal by correcting the quadratic 

error at each iteration, gave us acceptable results. 

Meanwhile, using this, we should have to find and generate 

a new appropriate signal for each new configuration (e.g. 

transducers changing). We then felt the need for an 

automated solution, in order to generate as many analyzing 

wavelets as different test configurations. 

In [8], Conil et al. proves that it is possible to reproduce 

an input waveform for non-linear systems by using a Monte 

Carlo search guided by a simulated annealing algorithm 

(itself introduced by Kirkpatrick et al. [9]). The main 

advantage of this method is that no theoretical model of the 

system response is required. Meanwhile, in [8], Conil et al. 

work on a rather simple target waveform (i.e. without too 

many local extrema).  
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Figure 2: Principle of the "by-zone" simulated annealing 

and its slicing into "matching zones" (delimited by local 

extrema) 

 
Then, we have to search how to extend this method to 

get the desired waveform, provided our targeted wavelet (a 

Jaffard-Meyer with scale J=-5) contains too many local 

extrema. We found it was easier to apply a "by-zone" 

simulated annealing algorithm. Figure 2 shows an 

illustration of the process we thought of. We first slice the 

signal into "matching zones", delimited by local extrema. 

Then, using the same simulated annealing scheme as 

described in [8], we first try to match the waveform 

contained in the first zone, (centered zone, marked as "1" in 

Figure 2). After it reaches a satisfying level of similitude, 

we extend the matching process to the next two local 

extrema of the wavelet (that are symmetrical). We kept 

repeating this process until we reach the last zone (marked 

as "7" here in Figure 2). Using this "by-zone" method 

enables us to keep low the number of local extrema to deal 

with at each state of the algorithm. It also gives us an 

opportunity to control more finely the perturbing conditions 

we have to apply, in order to make the algorithm work as 

efficiently as possible. 

 

4 Results, simulations and 

experimentations 
 

4.1.  Simulation results for wavelet generation using 

"by-zone" simulated annealing 

 

We first tested our waveform generation algorithm by 

numerically simulating it. In this purpose, we have 

considered a target waveform such as a Jaffard wavelet with 

J=-5, defined by 2048 samples. We have then created a 

numerical model of the test bench described in Figure 1 

(using a measured hT(t) as a pulse response), and used our 

"by-zone" simulated annealing on it. Figure 3 gives a 

sample of resulting waveform and the corresponding 

spectral shape we obtained (in dotted black line) compared 

to the theory (in light gray line). 
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Figure 3: Temporal (left) and spectral (right) shapes 

obtained using "by-zone" simulated annealing vs. 

theoretical shapes 

Simulations show a good matching between theoretical 

and experimental obtained shape. Moreover, the algorithm 

proved to be quite fast on our test configuration (with an 

average of 13 minutes of executing time). Next step will be 

to implement this promising algorithm on a practical 

system. 

 

4.2.  Simulation results for wavelet deconvolution 

 

Provided we found possible ways to generate a wavelet-

like transfer function for x(t), the method exposed in 

paragraph 3.2 reveals applicable. Let us take the case of a 

multi-layer plane interface (water/Plexiglas/water) with 

thickness D=2 mm and compressional wave velocity 

cM=2700 m/s, corresponding to a dioptre constituted of two 

Dirac localized at t=t1 for the first arrival wave, and t= t2 for 

the second arrival wave. We have employed both 

transmitted pulse and Jaffard wavelet at J=-5 as analyzing 

waveforms.  

The case of the interface at a depth of 2 mm is 

interesting because the wavelength in the water at 1 MHz 

(equal to 1.5 mm for a compression wave velocity for water 

of 1500 m/s) is close to the depth, and the signals have 

therefore merged, as shown in Figure 4. These signals were 

then decomposed into wavelet functions (several scales j). 

The maximum coefficients of the dyadic grid were used to 

identify the scale j, where the echoes are separated, and the 

time of flight ∆t=t2-t1 was calculated (cf. Figure 5).  

Table 1 compares the thickness calculated for both 

analyzing waves. The discrimination based on the 

transmitted pulse is more difficult (the error is about 73%), 

whereas using the wavelet-based deconvolution method, it 

is far more efficient: the error at the interface is only about 

8%. Despite these first results gave us a real improvement in 

terms of resolution, we are still working on the detection 

method to give even more refined estimation of the 

thickness (our targeted error percentage is 1 to 2% for 

thickness below or equal to the system wavelength in water 

(for recall, here, 1.5 mm)). 

 

  
 

Figure 4: Simulated ultrasonic signals transmitted in plane 

interfaces; wavelet at J =-5  (left), transmitted pulse (right) 

 

  
 

Figure 5: Dyadic grid corresponding to the scale J of non-

zero coefficients; wavelet J = -5 (left), transmitted pulse 

(right) 

 

∆t=1.6 µs ∆t=0.4 µs 



Real thickness (mm) Calculated thickness (mm) (error %) 

D=(∆t*cM)/2 

           Wavelet                   Transmitted Pulse 

2 2.16 (8 %) 0.54 (73 %) 
 

Table 1: Comparison of thickness obtained using the two 

different analyzing waveforms 

 

4.3. Experimental wavelet deconvolution 

 

We then have experimented the wavelet deconvolution 

using a sample that was a non-circular homogeneous 

isotropic tube made of artificial resin (NEUKADUR 

ProtoCast 113
TM
). The signals were containing 1024 

distributed samples occurring every 50 ns (frequency rate of 

20 MHz). The nominal frequency of the transducer was 1 

MHz. Figure 6 shows the tomograms given by both 

analyzing waves. 

 

 
 

Figure 6: Ultrasonic computed tomography of a non-circular 

elastic tube. Tomogram with 300 x 300 pixels using a 

manually generated wavelet at J=-5 (left) or a transmitted 

pulse (right) 

 

After performing wavelet-based decomposition on the 

all cross-sectional signals received, the definition of the 

outer and inner boundaries of the cylinder was obtained 

with a much better resolution than with the use of the 

transmitted pulse. This leads us to conclude that using 

wavelet-based deconvolution is a promising technique in 

order to obtain better resolution in ultrasonic computed 

tomography. 
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