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Exploration of shear stresses induced by a contrast agent bubble on the cell 
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The subject of this study is shear stress exerted on the cell membrane by acoustic microstreaming generated
by a contrast microbubble pulsating nearby a cell. This effect is presumed to play a major role in the
sonoporation process. Currently, the existing model of this effect is based on an equation that has been derived
for a free hemispherical bubble resting on a rigid plane. Such a model is not adequate for an encapsulated bubble 
such as a contrast agent microbubble. In this study, an improved theory is suggested that assumes an
encapsulated bubble to be detached from the cell membrane. The new model allows one to calculate the shear
stress distribution on the cell membrane and to determine the position and the magnitude of the peak shear stress
at different values of the acoustic parameters. The second problem under consideration is how to apply the
model for pairwise bubble-cell interactions to bubble-cell solutions which one has to deal with in experiments.
An approach is proposed to evaluate the number of cells undergoing sonoporation in a bubble-cell solution. It is
shown that the reaction of a bubble-cell solution to the variation of the acoustic parameters can be different from
what is expected from the analysis of pairwise interactions between single bubbles and cells. In particular, the
attenuation of the driving acoustic wave caused by bubbles can considerably reduce the total efficiency of
sonoporation in the solution at frequencies close to the resonance frequency of bubbles of dominant size.
Numerical examples for a polydisperse bubble population are presented.

1 Introduction
In recent years new promising possibilities for targeted

drug and gene delivery have been discovered that can be
realized by using ultrasound contrast agents. Ultrasound
contrast agents are micron-sized encapsulated gas bubbles
which are produced by pharmaceutical companies for
medical ultrasound applications [1]. The encapsulation is
necessary to prevent bubbles from fast dissolution in blood
and coalescence. Initially, contrast agents were used in
ultrasonic diagnostics. In this case, they are injected into the 
bloodstream of the patient in order to increase the contrast
between blood and tissue during an ultrasonic examination
and thereby to improve the quality of ultrasonic images and
diagnosis confidence. More recently, specific contrast
agents have been designed that are capable of selectively
adhering to desired target sites in the human body [2].
Moreover, such targeted contrast agents can carry drugs or
genes inside or on the encapsulating shell. This capability,
in combination with the phenomenon known as
sonoporation, provides unprecedented possibilities for a
highly selective therapeutic action. The term
sonoporation denotes a process in which ultrasonically

activated contract microbubbles, pulsating nearby cells,
increase the permeability of cell membranes and thereby
enhance the penetration of external substances into cells [3].
In this way drugs and genes can be delivered inside
individual cells without serious consequences for the cell
viability. In spite of numerous experimental investigations
on sonoporation, the mechanism of this phenomenon
remains unknown. The dominant hypothesis is currently
that the penetration of foreign molecules from the
extracellular space occurs through transient micropores in
the cell membrane [4-6]. The pores are supposed to arise in

response to shear stresses that are exerted on the cell
membrane by acoustic microstreaming generated by a
contrast microbubble when it is pulsating nearby a cell.
This process is depicted schematically in Fig. 1. 

Figure 1 : Schematic sketch of the sonoporation process.

To estimate the shear stress created on the cell
membrane, a formula is used that was adopted from the
theory developed by Nyborg [7] in the context of ultrasound 
cavitation cleaning. This formula was derived for a gas
hemisphere resting on a rigid infinite plane. It is evident
that such a model is not adequate for an encapsulated
bubble. Therefore the first purpose of the present study was
to develop a more correct model, assuming that a contrast
bubble is detached from the cell membrane. The second
problem considered is how to apply the model for pairwise
bubble-cell interactions to bubble-cell solutions which one
has to deal with in experiments. In particular, it is known
that, as the driving ultrasonic wave propagates through a
bubble-cell solution, it is attenuated because of the
scattering by contrast microbubbles. As a result,
microbubbles are exited at different acoustic pressure



amplitudes depending on their position inside the solution,
which affects their possibility to produce stresses necessary
for sonoporation. In the present paper, an approach is
proposed that allows one to evaluate the number of
sonoporated cells in a bubble-cell solution, taking into
account the attenuation of the imposed ultrasound field.

2 Theoretical model for pairwise 
bubble-cell interactions

Nyborg [7] developed an approximate method for
calculating acoustically-induced steady vortical flow near a
fluid-solid interface. This flow, referred to as acoustic
streaming, occurs near the surfaces of obstacles and
vibrating objects in a viscous fluid subject to an acoustic
wave field. Nyborg s theory allows one to estimate shear
stresses produced on a rigid boundary by acoustic
microstreaming that is generated by a small sound source
situated in the vicinity of the boundary. To apply Nyborg s
theory to a specific sound source, it is necessary at first to
calculate the irrotational oscillatory velocity field that is
generated by the sound source near the boundary assuming
that the ambient liquid is nonviscous. As an example,
Nyborg applied his theory to the case of a pulsating gas
hemispherical bubble resting on a rigid plane. In this case,
according to his results, the maximal shear stress exerted on 
the plane can be represented as

1 2 2
max 00.5 L L mf U R , (1)

where L and L are the equilibrium density and viscosity of
the ambient liquid, f is the driving frequency, Um is the
maximum during an acoustic cycle of the radial velocity of
the bubble wall, and R0 is the equilibrium radius of the
bubble. Rooney [8] expressed (1) in terms of the
displacement amplitude of the bubble wall, denoted below
by m, and obtained the following formula:
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Rooney believed that in this formulation Nyborg s result
can be applied to sound sources other than a pulsating
hemispherical bubble, such as a vibrating Mason horn.

Lewin and Bjorno [9] suggested using the Rayleigh-
Plesset equation to calculate m. Later on, Wu [10] assumed
that (2) can be applied to an encapsulated bubble by using a
modified Rayleigh-Plesset equation that accounts for
encapsulation,
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Here R(t) is the instantaneous bubble radius, the overdot
denotes the time derivative, Pg0 is the equilibrium gas
pressure within the bubble, is the ratio of specific heats of
the gas, is the surface tension, P0 is the hydrostatic
pressure, and Pac(t) is the driving acoustic pressure. The
effect of encapsulation is described by the term S, which
was taken by Wu in the form suggested by de Jong et al.
[11]. Since then this theory has been used to estimate shear
stresses produced by a contrast bubble on the cell
membrane [12].

Clearly, however, that for an encapsulated bubble the
assumption underlying Nyborg s formula (2) is not

appropriate. A more suitable assumption would be that a
contrast bubble oscillates near a cell, being detached from
the cell membrane. This situation is depicted in Fig. 2,
where d denotes the distance between the center of the
bubble and the cell membrane. The dashed circle represents 

Figure 2 : An encapsulated bubble near the cell membrane.

an imaginary bubble that is required to satisfy the boundary
conditions on the cell membrane. We will assume that the
cell membrane behaves as a rigid plane. In this case, the
necessary boundary conditions are satisfied by assuming
that both bubbles are equal, pulsating in phase, and the
plane is halfway between them. Reasons for the
approximation of the cell membrane as a rigid plane are
discussed in Section 4.

For the situation shown in Fig. 2, (3) is not valid as it
was derived for a bubble in an unbounded liquid. To take
into account the presence of a rigid plane, (3) is modified
by introducing an additional term as proposed in [13],
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The next step is to obtain a refined formula for shear
stress instead of (2). In view of the cylindrical symmetry of
the problem considered, there is no loss in generality if the
consideration is restricted to the xz plane as shown in Fig. 2.
Then the irrotational liquid velocity that is generated in the
situation shown in Fig. 2 can be written as 
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where
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Following Nyborg s approach, we linearize (5) setting R =
R0 and dR/dt = i mexp(i t), where = 2 f. As a result, the 
amplitude of the x component of the velocity u is written as
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For the case under consideration, the shear stress produced
on the plane (cell membrane) shown in Fig. 2 is given by
Nyborg s theory to be
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Substitution of (7) into (8) yields
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where = x/d. The -dependent factor on the right-hand
side of (9) has a maximum at max = (13 129) 20 . It is
seen that the shear stress increases as d decreases and the
maximum stress is reached when the microbubble is in
contact with the plane (cell membrane). The maximum
value of the shear stress in the x direction (on the cell
membrane) takes place along a circle whose center is the
projection of the center of the microbubble on the plane,
and the radius of the circle is equal to maxd when the
microbubble is at distance d from the plane.

Let us consider the shear stress distribution that is
created by a contrast microbubble on the cell membrane in
accord with (4) and (9). An example of such a distribution
is shown in Fig. 3. In this calculation, the shell model
suggested in [14] has been used,
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where is the shell surface elastic modulus, 0 and 1 are
parameters describing the viscous behavior of the shell, and
the normalizing factor = 4 μs. The shear stress distribution 
shown in Fig. 3 was calculated for a contrast microbubble
with the initial radius R0 = 1.5 μm at d = 2 R0, f = 2.0 MHz,
and the acoustic pressure amplitude Pm0 = 200 kPa. The
other parameters used in this calculation were the
following: P0 = 101.3 kPa, L = 1000 kg/m3, L = 0.001
Pa·s, c = 1500 m/s, = 1.07, = 0.072 N/m, 0 = 1.2 10-7

kg/s, 1 = 2.0 10-15 kg , and = 0.12 N/m.

Figure 3 : Shear stress distribution created by a contrast 
microbubble on the cell membrane. 

The central point 0.0 in Fig. 3 is straight under the
center of the bubble. Positive values of shear stress in Fig. 3
mean that the stress is directed away from the central point,
and vice versa. Figure 3 shows that at the point which is the
projection of the bubble center on the cell surface, the shear
stress is zero, then it increases, being directed away from
the bubble, reaches a maximum (the darkest area),
decreases down to zero (the black circle with the label 0.0),
and changes sign, getting directed to the bubble. The reason
of zero stress at the center is that at this point shear stresses
act in all directions and therefore compensate each other. It
is this point that is the site of a possible rupture. 

The shear stress distribution shown in Fig. 3 predicts the 
following pattern of the behavior of the cell membrane.

When the imposed acoustic pressure reaches a threshold
value, a rupture emerges at the central point. The stretching
shear stresses widen the emerged hole until the
counteraction of the cell membrane stops this process.
When the ultrasound is off, the hole closes due to the back
reaction of the cell membrane. This is the case of non-lethal
sonoporation. If, however, the imposed acoustic pressure is
strong so that the expansion of the hole damages
irreversibly the structure of the cell membrane, then the
hole doest not vanish completely after ultrasound exposure.
This is the case of lethal sonoporation. 

3 Modeling of sonoporation in a 
bubble-cell solution

In experiments one has to deal with bubble-cell
solutions. Therefore the question arises as to how to
compare measurements made for a bubble-cell solution
with the theory for pairwise bubble-cell interactions.

Let us assume that a bubble-cell solution under
investigation occupies a container with depth D and cross-
section area A. As the driving acoustic wave propagates
through the container, it is attenuated because of the
presence of contrast microbubbles. As a result, the
microbubbles are excited at different acoustic pressure
amplitudes depending on their position in the container.
This process can be described as follows. 

The acoustic wave field can be represented as

0( ) exp( )ac mt P i t ikzP , (11)
where z denotes the direction of the wave propagation
toward the interior of the container and k is the wave
number that takes into account the presence of
microbubbles. The attenuation coefficient is then defined as

= -Im{k} and the acoustic pressure amplitude at the
distance z deep into the container is given by

0 exp( )m mP P z . (12)
Substituting (11) into (4), one can calculate m for a contrast 
bubble with radius R0 located at depth z, and then,
substituting m into (9), one can calculate the shear stress
produced by this bubble.

Let us now assume that there is a threshold value of
shear stress which, when being experienced by the cell
membrane, leads to the onset of sonoporation. In the
literature, a value of 12 Pa is reported [10]. Using (4), (9),
and (11), one can calculate the critical depth zcr at which the 
maximum shear stress generated by a bubble with radius R0
drops below the threshold shear stress cr necessary for
sonoporation.

To go on with the derivation, one has to make
simplifying assumptions. Let us assume that (a) cells and
bubbles are uniformly distributed within the container, (b)
the number of bubbles is equal to that of cells, (c) the
specific bubble concentration is low enough to ignore
bubble-bubble interactions, (d) bubbles are in the
immediate vicinity of cells, and (e) there is only one bubble
beside each cell. The first three conditions can be satisfied
by proper preparation of a bubble-cell solution. The fourth
condition can be obtained by means of preliminary
insonification of the bubble-cell solution with relatively
weak ultrasound. As a result, secondary acoustic radiation
forces should bring together bubbles and cells. The fifth
condition cannot be created by intent, but statistically, one
can expect that such situations dominate the solution and



hence their contribution will be dominant as well. It should
be also mentioned that strong ultrasound can give rise to
global liquid motions in the container, such as large-scale
acoustic streaming. The complexity of such processes
makes it difficult to determine the degree of their influence
on the process of sonoporation and to point out the way by
which this influence could be taken into account. Therefore
special experimental preparations should be made to
minimize such processes.

Under the conditions pointed out above, the number of
sonoporated cells in the container can be evaluated as

max

min

0 0 0( ) ( )
R

sc s b
R

N A z R n R dR , (13)

where nb(R0) is the distribution function of contrast bubbles
over radii so that nb(R0)dR0 is the number of bubbles with
radii from R0 to R0 + dR0 per unit volume. Note that (13)
gives the number of cells undergoing both reparable and
lethal sonoporation. The total number of cells in the
container is given by Nc = ADnc, where nc is the number of
cells per unit volume, which, by assumption, is equal to the
number of bubbles per unit volume, that is,
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It follows that the percentage of sonoporated cells can be
evaluated as 
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The problem remains as to how to evaluate the wave
number k in the case of nonlinear oscillations. The
following method can be proposed. The wave number in a
bubbly liquid can be expressed in terms of the amplitude of
the bubble oscillation as [15]
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where c is the speed of sound in the ambient liquid, m0 is
the amplitude of the oscillation of a bubble with radius R0 at
pressure Pm0, and is the phase delay of the bubble
oscillation with respect to the driving pressure Pac(t). The
quantities m0 and can be calculated from (4) and
substituted into (16). It should be noted, however, that (16)
is derived from the linear equations of wave propagation.
We assume that this equation is still valid for the cases
considered here. 

Figure 4 demonstrates an example of using (15) and
(16) for the modeling of sonoporation processes in a
bubble-cell solution. The percentage of sonoporated cells is
depicted as a function of the driving frequency at different
pressures. It is assumed that cr = 12 Pa, D = 0.015 m, d =
R0, and the bubble size distribution function nb(R0)
corresponds to that of the contrast agent SonoVue (Bracco
Research SA, Geneva, Switzerland) with the volume bubble 
concentration 10-5 (3 105 microbubbles per 1 ml). The
other parameters used in this calculation were the

following: P0 = 101.3 kPa, L = 1000 kg/m3, L = 0.001
Pa·s, c = 1500 m/s, = 1.07, and = 0.072 N/m. For a shell
model, (10) was taken. It is known that all available shell
models show that their shell parameters are dependent on
the equilibrium bubble radius [14]. This fact should be
taken into consideration when simulations for a
polydisperse bubble population are performed. Based on the 
results of [14], the following linear regression equations for
the best-fit values of the shell parameters of the model (10)
were used:

7
0 0 0( ) 10 0.28 0.65R R , (17)

15
1 0 0( ) 10 1.8 1.1R R , (18)

0 0( ) 0.28 0.30R R , (19)
where R0 is specified in micrometers.

Figure 4 : Dependence of the percentage of sonoporated
cells Psc on the driving frequency at different values of the 

acoustic pressure amplitude Pm0.

Figure 4 suggests that the minimum of the sonoporation
efficiency corresponds to the resonance frequency of
contrast microbubbles of dominant size, since at this
frequency the attenuation of the acoustic field becomes
maximal. One can see that, if bubbles of dominant size are
excited below their resonance frequency, the efficiency of
sonoporation decreases as the driving frequency increases.
Increasing the driving frequency may again lead to an
increase in the efficiency of sonoporation only when
bubbles of dominant size are excited well above their
resonance frequency.

4 Conclusion
There are numerous experimental investigations on

sonoporation, while the theoretical background of this
phenomenon still is in its infancy. There are two main
theoretical problems to be solved. The purpose of the first
one is to study how the interaction between a cell and an
ultrasound-induced contrast microbubble leads to
sonoporation and to develop a simulation model for this
interaction. The second problem is how to apply the above
model of pairwise bubble-cell interactions to bubble-cell
solutions which one has to deal with in experiments in order 
to compare theoretical predictions with experimental
measurements. Both problems have been considered in this
study.

At present the dominant opinion is that sonoporation is
caused by shear stress exerted on the cell membrane by
acoustic microstreaming generated by a contrast
microbubble pulsating nearby a cell. However, the existing



model of this effect is based on an equation that has been
derived for a gas hemisphere resting on a rigid plane. It is
evident that such a model is not adequate for an
encapsulated bubble such as a contrast agent microbubble.
In this paper, an improved theory is suggested that assumes
a contrast microbubble to be detached from the cell
membrane. Simulations made by using the improved model
have allowed one to calculate the shear stress distribution
created on the cell membrane by an adjacent pulsating
contrast microbubble. It has been shown that the maximum
of the shear stress on the cell surface occurs along a circle
whose radius is about 0.287d, where d is the distance
between the bubble and the cell. This maximum value is
likely to determine the threshold value of shear stress which 
leads to the onset of sonoporation. 

A method has been proposed as to how the model for
pairwise interactions between bubbles and cells can be
applied to a bubble-cell solution in order to evaluate the
number of sonoporated cells at different values of the
acoustic parameters. It has been shown that the attenuation
of the driving acoustic wave caused by contrast
microbubbles can considerably decrease the efficiency of
sonoporation in a bubble-cell solution at frequencies close
to the resonance frequency of bubbles of dominant size.

In conclusion, we would like to discuss the limitations
of the theory developed in this paper. The weak point of the
proposed theory is the approximation of the cell membrane
as an infinite rigid plane. The following arguments can be
presented in support of this approximation. 

The size of human cells is on the order of 10 100 μm
[16], while a representative diameter of currently used
contrast agents lies in the range from about 1 to 3 μm. Also, 
one can see in Fig. 3, which was calculated for a contrast
bubble with a diameter of 3 μm, that the diameter of the
area where the maximum stress is reached and supposedly a 
hole emerges, is on the order of 1.5 2 μm. Therefore a cell 
can generally be considered as a substantially bigger object
than both a contrast bubble and the part of the cell
membrane where the main interaction between the cell and
the bubble takes place. 

As regards the rigidity of a cell, the elastic modulus of
cell membranes is estimated to be on the order of 10 1000
MPa; for example, for the membrane of lymphocytes the
elastic modulus is 80 MPa [17]. Such high values show that
a cell is a rather rigid object. 

These arguments justify the use of the model of a rigid
wall for the cell membrane, at least as a first approximation. 
Nevertheless we would like to emphasize that the main
reason of why we have to use this assumption is that at
present there is no theory for an elastic wall that could be
incorporated into our calculations. We hope that our work
will stimulate studies on surmounting this shortcoming.
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