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Statistical energy analysis (SEA) is a well-known method, which can be also used for prediction of
transmission loss. The difficulty in this method is to estimate the coupling loss factors, which are needed
to calculate the energy transfer between the subsystems. It has been shown in previous articles on
examples for structure-to-structure and structure-to-cavity coupling, that the statistical modal energy
distribution analysis (SmEdA) is a convenient method for calculating this coupling loss factors. This
approach relies on a dual modal formulation to describe vibrations of coupled subsystems. However, the
original SmEdA formulation takes into account only the resonant modes related to a frequency band.
That is the reason for developing an improved approach on the basis of SmEdA in the framework of
the Marie Curie project ”MID-FREQUENCY”. This improved method integrates the non resonant
modes in the calculation. The application possibilities and the advantages of the new extended version
of SmEdA are demonstrated on the example of transmission loss of a plate between two finite cavities.
The principal advantages are that transmission loss can be predicted for non-diffuse sound fields and for
different boundary conditions.

1 Introduction

The well-know transmission loss R is used to character-
ize the physical process of the transmission of acoustic
power through a partition. It is defined with the trans-
mission factor τ as follows [3]:

R = 10 lg

(
1

τ

)
. (1)

The transmission factor τ itself is the ratio of the power
Pt transmitted through the partition and the incident
power Pi.

τ =
Pt

Pi

(2)

The search for equations for τ depending on the param-
eters of the incident waves and the partition is a quite
old field of research. The first one was the still very
popular and often used so called ”mass law”

R = 10 lg

[
1 +

(
ωm cosϑ

2ρc

)2
]

(3)

It describes the relation between the mass per area m,
the angular frequency ω, the density ρ and the speed of
sound c of the fluid, the angle of incidence ϑ and the
transmission loss R. The basic acoustic equations for
this law were formulated by Rayleigh and it was experi-
mentally verified amongst others by Berger. The further
development of this physical law was the formula of Cre-
mer for thin infinite plates. He included the influence of
the bending stiffness B on the transmission loss using
the plate equation of Kirchhoff.

RC = 10 lg

[
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(
ωm−Bω3 sin

4 ϑ

c4

)2 (
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2ρc

)2
]

(4)

In the following years till this day many other transmis-
sion loss models have been developed. For that purpose
it exists more or less four different ways to handle the
transmission problem. The first one is the wave ap-
proach, which was also used for the mass law and the
formula of Cremer. Here it is tried to find exact ana-
lytical solutions of the wave equations and so to predict
the transmission loss. Such approaches has been estab-
lished for example for finite plates by Heckl [3] or for
finite plate and finite cavities by Nilsson [10] and by
Josse and Lamure [4]. But because of the involved as-
sumptions and simplifications these are only useful for
special cases and provide only rough estimates. The
second way is to solve the transmission problem with a
numerical method. This is in principle possible for all
cases, even for complex geometries. Sakuma and Os-
hima [12], for example, developed a computational pro-
cedure for a finite plate with arbitrary elastic boundary
conditions between two semi-infinite rooms with FEM.
The third procedure is to use a variational approach.
This is in principle a very general formulation of the
transmission problem, but only applicable to simple ge-
ometries, like a rectangular plate. The variational ap-
proach was used for example by Gaglardini, Roland and
Guyader [2] (finite systems) and by Woodcock [14] (fi-
nite plate) to develop transmission loss models. The
fourth way is to calculate the transmission loss with the
statistical energy analysis (SEA), like Lyon and DeJong
[6] or Renji, Nair and Narayanan [11] have done it. SEA
is a quite easy and fast method, because only a linear
power balance equation system (one equation for each
subsystem) must be solved. But the problem of this
model is the description of the cavity-plate-cavity cou-
pling. In addition SEA is generally only dedicated for
high frequencies and diffuse sound fields. A description



of it is given in the following chapter. All in all there are
still a lot of problems to calculate the transmission loss
of more or less realistic cases. At the moment no calcu-
lation method exists, that can be used without restric-
tions for different geometries of cavities and plates, for
different boundary conditions and for non diffuse sound
fields. The calculation method for the transmission loss
with the statistical modal energy distribution analysis
(SmEdA), presented in this paper, can in principle han-
dle these restrictions. SmEdA, which was developed by
Maxit and Guyader [7], is a mixture of the other al-
ready described approaches. The basic equation system
is the same as the one of SEA and it needs a functional
basis, namely the eigenmodes of the subsystems, which
can be calculated by one of the other methods. The
latter represents a critical point of this prediction pro-
cedure, because the mode density increases with rising
frequency and with rising size of the subsystems and so
does the computation time.

2 Theory

2.1 Classical Statistical Energy Analysis

The statistical energy analysis is a well-known energy
based method. The development of it started in the
early 1960s with the works about coupled oscillators by
Lyon and Smith [6]. The fundamental equation of this
method is the power balance for each subsystem (for
example an oscillator). This means, that all the power
Πi, which is input to a subsystem i, must be dissipated
(Πi

dis) in this subsystem or must be transmitted into
another connected subsystem (Πi

ex).

Πi = Πi
dis +Πi

ex (5)

Lyon has found out that this power exchange Πi
ex be-

tween two coupled subsystems is proportional to the dif-
ference of their total time-averaged energies. Also the
total energy is linked via the subsystem damping loss
factor ηi to the dissipation power Πi

dis. So it can be
written

Πi = ωcηiEi + ωcηij(Ei − Ej) (6)

where ωc is the central angular frequency of the fre-
quency band and ηij is the coupling loss factor. More-
over, the coupling loss factors of two coupled subsystems
are interrelated through the reciprocity relation

niηij = njηji (7)

with the modal densities ni and nj of subsystems i and
j. All in all the energies of the subsystems are calculated
with a linear equation system at a given power input.
So SEA is principally an easy calculation method, but
one problem is the estimation of the coupling loss fac-
tors. Also it produces only global results for the average
energy of each subsystem without any further detailed
informations, like the distribution of these energies. One
way to predict the coupling loss factors for the transmis-
sion loss calculation of a finite plate between two finite
cavities is described by Lyon and DeJong [6]. They di-
vided the process of transmission into two parts, the
non resonant and the resonant transmission. The first

is more or less an extended version of the mass law for a
diffuse sound field and is characterized by the coupling
loss factor η12 for the direct coupling between the two
cavities.

η12 = βcI12
c1

fk21V1

τ12,∞(0)

2− τ12,∞(0)
(8)

with the transmission coefficient τ12,∞(0) for normal
incidence, the correction factor βc for the case of low
modal overlap, the frequency f , the correction factor
I12 for diffuse sound field and the sound velocity c1, the
wavenumber k1 and the volume V1 of the cavity one.
The second part of transmission in the model of Lyon
and DeJong, the resonant transmission through the res-
onant modes of the plate, is represented by an indirect
coupling factor ηp2. This is related to the plate radiation
efficiency σrad as follows:

ηp2 =
ρ1c1
ωρphp

σrad (9)

where ρ1 and c1 are the density and the sound velocity of
cavity one, ρp and hp are the density and the thickness
of the plate and ω is the angular frequency. Finally the
basic power balance equation system of SEA reads [11]:⎛

⎝ Π1

0
0

⎞
⎠ = A

⎛
⎝ E1

Ep

E2

⎞
⎠ (10)

with

A =

⎛
⎝ η1 + η1p + η12 −ηp1 −η21

−η1p η2 + ηp1 + ηp2 −η2p
−η12 −ηp2 η2 + η2p + η21

⎞
⎠

At equal fluids in the both cavities ηp2 is equal to ηp1.
The rest of the coupling factors can be obtained from
the reciprocity relation (equation (7)). The transmission
factor can be then calculated with the estimated energies
using the following equation, [9]:

τ =
p22A2

p21S
(11)

where p2 and p1 are the effective values of the pressures
in cavity one and two, A2 is the equivalent absorption
area of cavity two and S the surface of the plate. The
pressure and the equivalent absorption area in a cavity
i are given by [1, 11]:

pi =
ρic

2
iEi

Vi

(12)

and

Ai =
4ηiωcVi

ci
(13)

where ρi, ci and Vi are the density, the sound velocity
and the volume of cavity i and ωc is the central fre-
quency of the excited frequency band. To sum up, con-
trary to the mass law and the formula of Cremer this
formulation does not neglect the influence of the cavity
parameters, size and damping, and takes into account
the finite size of the plate.



2.2 Statistical modal Energy distribu-

tion Analysis

The statistical modal energy distribution analysis
(SmEdA) is based on the dual formulation of two gy-
roscopic coupled oscillators [7]. Under the assumption
of a white noise excitation the modal coupling loss factor
reads:

β12
pq =

(W 12
pq )

2
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q )
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with
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where W 12
pq is the interaction modal work and where

M1
p , M

2
q , η1, η2, ω1 and ω2 are the modal masses, the

damping factors and the eigenfrequencies of the p-th
and q-th mode of the subsystems 1 and 2. The coupling
loss factors of classical SEA can be calculated then on
condition of modal equipartition of energy [13] with the
following formulas:

η12 =
1

pmaxωc

pmax∑
p=1

qmax∑
q=1

β12
pq (15)

η21 =
1

qmaxωc

pmax∑
p=1

qmax∑
q=1

β12
pq (16)

where pmax and qmax are the numbers of resonant modes
relative to the excited frequency band with the central
frequency ωc. It was shown by some authors, for ex-
ample by Maxit and Guyader [8] for structure-structure
coupling or by Totaro, Dodard and Guyader [13] for
structure-cavity coupling, that the coupling factors com-
puted by SmEdA agree well with these obtained by
other approaches. Moreover, the energies of the differ-
ent subsystems can be also calculated directly using β12

pq

and a power balance equation system with one equation
for each mode instead of one for each subsystem like in
SEA.

Π1
p = η1pω

1
pE

1
p +

qmax∑
q=1

β12
pq (E

1
p − E2

q ) (17)

A main drawback of this original SmEdA approach is
that because of the assumption of white noise excitation
only resonant modes in an excited frequency band are
taken into account. But the influence of non resonant
modes can be not neglected in some cases, for example
in the case of highly damped systems. To find a so-
lution for this problem it is necessary to have a closer
lock to the original derivation of the method for the case
of a cavity-plate coupling. In SmEdA the coupled sys-
tem is split into a clamped cavity and free plate on the
coupling surface to describe the coupling between the
pressure in the cavity and the plate velocity. This is
the same as the assumption ”blocked pressure” in other
transmission loss models, where it is assumed that the
move of the plate is negligible for the calculation of the
surface pressure and the plate is then excited by the re-
sultant force. But of course for the evaluation of the

kinetic energy of the cavity and the potential energy of
the plate the boundary conditions must be respected.
These conditions are the equality of the velocities ẏbi
and the equality of the products of the stress tensors
σib
rs and normal vectors ni

s at the coupling surface.

ẏb1 = ẏb2 (18)

σ1b
rsn

1
s = σ2b

rsn
2
s (19)

The latter is not the case in the original SmEdA for-
mulation. Finally the coupled system is defined with
four equations, the two coupled differential equations
of original SmEdA and the two boundary conditions,
but there are only two variables. Such overdetermined
systems have in general no exact solution and it is dif-
ficult to find an approximate solution. Through trial
and error it was found out that the mass law and the
formula of Cremer, equations (3) and (4), can be de-
rived analytically with the original coupling factor β12

pq ,
equation (14), and the power balance, equation (17).
So β12

pq seems to be also the general coupling factor for
any coupling of two modes, non resonant and resonant
ones, because the coupling in the formula of Cremer is
arbitrary and no assumption of white noise is needed.
Perhaps this works, because β12

pq can be also interpreted
as the average coupling loss factor between two modes
of all possible single-frequency excitations from zero to
infinity. Altogether because of these reasons the non res-
onant modes are also taken into account in an extended
SmEdA approach using β12

pq , whereas the excitation still
remains in a frequency band only. Finally the obtained
energies, the geometrical data and the damping factors
of the cavities need only to be inserted in equation (11)
to get the transmission factor and so the transmission
loss. This transmission loss depends on the same pa-
rameters as the one obtained by the SEA approach.

3 Comparison of the approaches

3.1 System under study

To compare the results for the transmission loss of the
different calculation methods we consider a basic config-
uration of a rectangular plate between two parallelepi-
pedic cavities as presented in Figure 1 and Table 1.

Lz1

Ly

Lz2h

plate receiving room

z

y

x

sending room

Lx

Figure 1: Sketch of the system



plate sending

room

receiving

room

Lx × Ly ×
Lz(h) (m)

1.2 × 0.9 ×
0.004

1.2 × 0.9 ×
0.7

1.2×0.9×1

ρ (kg/m3) 7820 1.2 1.2
c (m/s) 340 340
η 0.01 0.01 0.01
E (MPa) 210
ν 0.3

Table 1: Characteristics of the subsystems

In the present case the eigenmodes and eigenfrequen-
cies can be calculated quite easily analytically. The
shapes pqrs of the eigenmodes and the eigenfrequencies
ωqrs for the cavities are given by [9]

pqrs = cos

(
qπx

Lx

)
cos

(
rπy

Ly

)
cos

(
sπz

Lz

)
(20)

and

ωqrs = c

√(
qπ

Lx

)2

+

(
rπ

Ly

)2

+

(
sπ

Lz

)2

(21)

For the plate there is the possibility to choose between
different boundary conditions. We take for our study
the simply supported and the free boundary condition.
The eigenfrequencies ωs

mn and the modes W s
mn of the

simply supported boundary condition are

ωs
mn = π2

[(
m

Lx

)2

+

(
n

Ly

)2
]√

B

m
(22)

and

W s
mn = sin

(
mπx

Lx

)
sin

(
nπy

Ly

)
(23)

with the mass per area m and the bending stiffness B
of the plate.

3.2 Transmission Loss

3.2.1 Simply supported plate

At first before we compare the results from the SmEdA
approach with those of other models, it is necessary to
compare the different possibilities of calculations with
SmEdA. So the next two Figures (2 and 3) show the
results of transmission loss for different plate damping
factors η2 calculated with

- SEA with SmEdA estimated couplings factors
(SmEdA SEA CLF; equations (6), (15) and (16))

- SmEdA direct only with resonant modes (SmEdA
resonant; equations (14) and (17))

- SmEdA direct with resonant and non resonant
modes (SmEdA non resonant; equations (14) and
(17)).

For the last approach the number of modes, that are
taken into account, is enlarged until the changes in the
transmission loss get small, for example smaller than 1
dB. In our case at the plate damping 0.1 it is necessary
to take into account all the modes of the not excited

subsystems from 600 Hz below to 300 Hz above the fre-
quency band (band width: 400 Hz). The non resonant
modes of the excited systems, which are also not excited,
do not matter.
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Figure 2: Transmission loss of the different SmEdA
models at η2 = 0.001
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Figure 3: Transmission loss of the different SmEdA
models at η2 = 0.1

All in all Figures 2 and 3 demonstrate that the case
with the simply supported boundaries of the plate is at
low damping governed by the resonant modes for the
whole frequency range while the non resonant modes
play a role only at quite high damping. Furthermore
between the SEA calculation with SmEdA coupling fac-
tors and SmEdA direct only with resonant modes there
is only a difference at low frequencies, because the as-
sumption of modal equipartition of energy (see equation
(7)) is generally not valid for low modal densities [5]. Be-
cause of these facts only the SmEdA direct calculation
without non resonant modes is given in the following
figures, except in the case of high damping, where the
non resonant modes are needed. Figures 4 to 6 show
now for three damping factors η2 of the plate the differ-
ent transmission losses predicted with the mass law for
normal incidence, the formula of Cremer for a diffuse
sound field, the SEA model of Lyon and DeJong and
the SmEdA approach.
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Figure 4: Transmission loss of the different models at
η2 = 0.001
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Figure 5: Transmission loss of the different models at
η2 = 0.01
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Figure 6: Transmission loss of the different models at
η2 = 0.1

By looking at the results of the different models it
attracts attention that both, the SmEdA and SEA pre-
diction, are sensitive below the critical frequency to a

change of the damping, unlike the formula of Cremer.
The main reason for this is that the dissipation of en-
ergy of the vibrating plate modes rises with increasing
damping, because the coupling factors change only a lit-
tle. Above the critical frequency the dependency of the
transmission loss on the plate damping is then equal
for these three models. This difference between the for-
mula of Cremer and the SmEdA approach does not come
from different descriptions of the transmission mecha-
nism. Under the same assumptions as for the formula
of Cremer (diffuse sound field, infinite plate, etc.) the
transmission loss predicted with SmEdA is analytically
given by

R = 10 lg

[
1 + S

(
cosϑ

2ρc

)2
]

(24)

with

S =

(
ωm− ω3B

sin4 ϑ

c4

)2

+mBη2ω4 sin
4 ϑ

c4

This formulation is compared to the original formula of
Cremer (equation (4)) in Figure 7 for our configuration
and a diffuse sound field (average over all possible inci-
dent directions). The damping in this original formula
is taken into account via the usual assumption of a com-
plex bending stiffness B̂ = B(1− iη2).
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Figure 7: Transmission loss of the infinite models from
Cremer and SmEdA at η2 = 0.1

It could be seen, there is only a small difference at
the critical frequency between the two formulations. To
sum up, this means that the transmission loss of a small
system, where we have a small plate and no diffuse field
at lower frequencies, is quite different than the one of a
big or infinite one below the critical frequency but stays
equal above it.

3.2.2 Free plate

As a second example for a plate boundary, the free
boundary condition was chosen. In Figure 8 the calcu-
lation possibilities of SmEdA with and without non res-
onant modes and the formula of Cremer are compared.
In this case the plate is 1 cm thick and not 4 mm as in
the calculations for the simply supported plate.
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Figure 8: Transmission loss of the different models at
η2 = 0.01

Using the original SmEdA calculation, i.e. only with
resonant modes, the transmission loss becomes infinite
below the critical frequency. This means that all modal
works between the resonant modes are zero. Thus it
is necessary to take into account below the critical fre-
quency all the modes from zero Hz to the upper limit
of the frequency band, because the energy transfer pro-
ceeds only through the non resonant modes. This shows,
that the configuration with a free boundary condition
has a non resonant behaviour below the critical fre-
quency and a more or less resonant above it. In com-
parison to the formula of Cremer the transmission loss
calculated with SmEdA is much higher. One reason for
this is the small number of energy transporting combi-
nations of plate and cavity modes. In addition to this
no diffuse sound field exists in such a small system with
lots of modes, which could excite the plate better.

4 Conclusion

As it is shown on the previous examples, the pre-
sented new method to estimate the transmission loss
with SmEdA is an interesting alternative to the other
existing prediction models, especially in the frequency
range below the critical frequency and for small sys-
tems with non diffuse fields. Furthermore this method
demonstrates that the transmission loss can be smaller
or much higher in this frequency range than the one
predicted by the infinite models. Another important
advantage is the very general formulation of the trans-
mission problem. So not only the presented cases of a
simply supported and a free plate between to finite cav-
ities can be handled but also cases with arbitrary plate
boundaries and complex geometries. Also it would be,
for example, possible to predict the transmission loss
with SmEdA for window assemblies, where the plate is
smaller than the corresponding walls of the cavities. The
only limits are the estimation of the modes and the com-
putation time growing with a rising number of modes,
which are taken into account.
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