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Nonlinear methods are now widespread in medical and industrial applications of ultrasound. The har-
monic generation within piezoelectric transducers needs to be quantified. This is particularly the case in
nonlinear NDT where the nonlinearity of the medium only has to be identified. High precision measu-
rements are then required that would spoiled by nonlinearity coming from the transducer itself. In the
present work, quadratic nonlinear equations of a piezoelectric element are derived by the perturbation
theory in onedimensionnal case. It is demonstrated that the nonlinear response can be represented by
controlled sources of voltage and current in equivalent electric circuits. This analysis allows the nonlinear
response of a loaded piezoelectric transducer to be efficiently predicted. It is shown that the infuence
of these acoustic loads on the nonlinear effects such as distortion depends phenomenologically on the
type of nonlinearity that dominates in the piezoelectric element, i.e. mechanical or electromechanical. A
generalisation of nonlinear equivalent electric circuits to cases including propagation media and passive
layers is presented, opening the way to the study of the nonlinear response of complex structures.

1 Introduction

In the field of Non-Destructive Evaluation (NDE),
it has been shown that nonlinear parameters associated
to harmonic generation can provide additional informa-
tion of interest on the status of these materials, such
as state of fatigue [1], [2]. Several NDE measurement
methods are based on the spectral modification of an
acoustic wave propagating through a sample under test.
However, as nonlinear effects in solids are very low com-
pared to linear phenomena, the measurements of these
nonlinearities can be severely affected by the existence
of external sources of nonlinearity which are the elec-
tronics and the ultrasonic transducer. If the effect of
the electronics can be reduced by the use of an adapted
filtering stage, the transducers can be a recurrent pro-
blem. Thus, it has been shown [1] that, in the range of
intensities (strain and stress in the transducer respecti-
vely of the order of 10−5 and 106 MPa) commonly used
for NDE applications, these nonlinearities are compe-
ting with those produced by the propagation medium.
In this study, equivalent electrical circuits are extended,
from a classical model [3], to the modelling of systems
including nonlinear acoustic, electric and piezoelectric
elements. The length-extensionnal mode is presented in
order for realistic nonlinear parameters extracted from
experimental results concerning PZT ceramics [4] to be
introduced.

2 Theoretical background

Assuming a weak nonlinearity, the constitutive equa-
tions of the piezoelectric element will be developed up
to quadratic terms only. In the case of the length-
extensionnal geometry, the usefull relations, in the first
nonlinear approximation, between the displacement u
along the z-axis of a piezoelectric rod, the first Piola-
Kirchhoff stress T , the electrical field E and the electri-
cal displacement D are formally [5] :

∂u
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β′
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where s, g and β are respectively the compliance,
piezoelectric and inverse of permittivity second-order
constants. The third-order constants s′ and β′ express
respectively second-order elastic and dielectric effects
whereas α and γ are related to an electromechanical
nonlinearity. According to [6], second-order dielectric ef-
fects can be ignored. Besides, as D does not depend
on space in the quasi-static approximation of Maxwell’s
law :

∂D

∂z
= 0 (2)

the constant γ plays no role in the dynamic law :
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where ρ is the reference mass density. The constant
γ can then also be ignored in a first approach. Thus, the
usefull constitutive relationships in this geometry can
be reduced to :
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∂z
= sT + gD +

s′

2
T 2 − αDT (4)

E = βD − gT +
α

2
T 2

The hypothesis of a weak nonlinearity allows non-
linearity to be considered as a perturbation of linear
fields. Each quantity u, E, T and D will be searched as
respective sums :

u =
∑∞

i=0 ui, E =
∑∞

i=0 Ei, T =
∑∞

i=0 Ti and
D =

∑∞
i=0 Di where the subscript i = 0 represents the

solution of the linear problem and the subscript i ≥ 1
represents the solution calculated at the i ≥ 1 order of
nonlinearity by successive approximations [7].

3 Linear and nonlinear equiva-

lent circuits

In linear case, the constitutive equations are :

∂u0

∂z
= sT0 + gD0 (5)

E0 = βD0 − gT0

The combination of (Eq 5) with the dynamic law (Eq
3) and the Maxwell-law (Eq 2) leads to the homogeneous
wave equation :

ρ
∂2u0

∂t2
−

1

s

∂2u0

∂z2
= 0 (6)

The piezoelectric rod is defined by its length 2a and
a cross-section area Σ = hd with h, d << a (Fig 1).

It is supposed to be driven by a voltage applied at
its ends z = ±a. The relations between the particle ve-
locity v0(±a, t), the stress T0(±a, t) at each face, the
electrical current I0 - defined by I0(t) = ΣdD0

dt
- and

the applied voltage V0(t) can be formally described by
an hexapole H0 with two acoustical ports and an elec-
trical port. In case of a sinusoidal electrical excitation
at an angular frequency ω at the connections z = ±a,
V0(t) = V0exp(jωt), the particle velocity in the piezoe-
lectric medium can be expressed as the sum of two waves
respectively in j(ωt + kz) and j(ωt− kz) :

v0(z, t) = [A+ejkz + A−e−jkz]ejωt (7)

where k = ωc is the wave number, c =
√

1
ρs

being the

longitudinal wave velocity in length-extensionnal mode.
Introducing the acoustical impedance Z = ρc of the

piezoelectric layer and the phase term θ = ka, one ob-
tains that :

Fig. 1: Scheme of the piezoelectric element. �T0(±a, t) and
�v0(±a, t) are respectively the stress vector and the particle
velocities at each face z = ±a of the piezoelectric element.
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where MH0,ω is the impedance matrix of the hexa-
pole [8] defined as :

MH0,ω = −j
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The use of matrix allows efficient calculations of li-
near solutions as a function of the boundary conditions.
A instrumentation chain can be easily represents by
equivalent electric circuits. It is shown by following that
such circuits can be extended to the nonlinear problem.

The constitutive relations between the first-order
physical quantities and the zero-order ones are :
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According to the expression of the stress T0(z, t),
the previous equation leads to the inhomogeneous wave
equation :
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The solution of the wave equation (Eq 11) is the
sum of the general solution ug

1(z, t) of the homogeneous
wave equation and a particular solution up

1(z, t) created

by source-terms : − s′

2s3

∂
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(∂u0

∂z
)2 and αs+gs′

s3 D0
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Thus, the particle velocity in the piezoelectric rod
v1(z, t) can be split into vg

1(z, t) and vp
1(z, t) correspon-

ding respectively to ug
1(z, t) and up

1(z, t). One can then
formally write at z = ±a :

v1(±a, t) = vg
1(±a, t) + vp

1(±a, t) (12)

Similar decompositions can be performed for the
second-order stress T1, the second-order potential V1

and the second-order current I1. The relations between
T g

1 (±a, t), vg
1(±a, t), V g

1 (t) and Ig
1 (t) can be described

by an hexapole H1 (Fig 2) whose impedance matrix
Mg

H1
is similar to MH0,ω. More precisely, Mg

H1
is exactly

MH0,2ω.

Fig. 2: Electrical equivalent circuit (hexapole) representing
relations between quantities T g

1
, V g

1
, vg

1
and Ig

1
. Connections at

points Ag

−1
and A′g

−1
, respectively Ag

1
and A′g

1
, represent the rear

acoustic port and the front acoustic port whereas connections at
Eg

1
and E′g

1
represent the electrical port.

The couples of particular solutions (T p
1 (−a), vp

1(−a))
and (T p

1 (a), vp
1(a)) can be represented either by ”T-

shaped” quadrupoles or by ”Π-shaped” quadrupoles pla-
ced at each acoustical port of the hexapole H1, so can
the couple of particular solutions (V p

1 , Ip
1 ) at the electri-

cal port. The ”T-shaped” quadrupoles have been chosen
in this work. The quadrupoles placed at each acoustical
port -z = ±a- consist of two equivalent controlled vol-
tage sources, TSL

1 (±a) and TSR
1 (±a), and one equiva-

lent controlled current source vS
1 (±a). The quadrupole

placed at the electrical port consists of two controlled
voltage sources, respectively V SL

1 and V SR
1 , and one

controlled current source IS
1 (Fig 3). In each of these

quadrupoles, the voltage sources placed furthest from
the hexapole H1 depend on the boundary conditions.

In the following, expressions of vp
1(±a), T p

1 (±a),
V p

1 and Ip
1 are explicited. Due to the fact that the

Fig. 3: Electrical equivalent schemes representing the
controlled sources (diamonds) located at : (a) the rear acoustical
port and (b) : the electrical port. These sources corresponds to
couples of particular solutions in the first approximation of the

nonlinear problem.

electrical displacement D0 does not depend on space,
the resolution of (Eq 11) imposes that two different
kinds of secondary waves vp

1(z, t) are present in the
piezoelectric material. The first ones, related only to the
square of ∂u0

∂z
, express a pure mechanical nonlinearity

and are propagated at the speed of fundamental waves.
They impose cumulative terms in the second-order
mechanical response. The second ones are linked to

cross-coupled nonlinearity, expressed by D0
∂2u0

∂z2 , and
are propagated at twice the speed of fundamental
waves. These last ones do not impose cumulative terms.
As a consequence of the existence of two different kinds
of nonlinearities, i.e : cumulative and non-cumulative
at twice the speed of fundamental waves, vp

1(z, t) must
be searched in the form :

vp
1(z, t) = z[A1+e2j(ωt+kz) + A1−e2j(ωt−kz)] (13)

+B1+ej(2ωt+kz) + B1−ej(2ωt−kz)

The coefficients A1± and B1± are obtained by iden-
tification after reintroducing them in (11) and deve-

lopping ∂
∂z

(∂u0

∂z
)2 and D0

∂2u0

∂z2 . These coefficients are fi-
nally :



A1± = j
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Z2ωA2
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B1± = −2j
αs + gs′

3Σks
I0ZA2

±

The continuity of second-order stress and second-
order particle velocity at interfaces z = ±a with pas-
sives layers (Fig 1) impose, in case of coupling to two
semi-infinite media :

T1(−a) = Zr[v
S
1 (−a) + vg

1(−a)] (15)

T1(a) = −Zf [vS
1 (a) + vg

1(a)]

where Zr and Zf are respectively the acoustic im-
pedances of the rear and front elastic layers. The terms
Zrv

S
1 (−a) and −ZfvS

1 (a) are voltage sources, depending
on boundary conditions in the acoustical port. They cor-
respond respectively to the left side, TSL

1 (−a), of the
rear source quadrupole and to the right side, TSR

1 (a),
of the front source quadrupole. On the contrary, the
sources TSR

1 (−a) and TSL
1 (a) do not depend on boun-

dary conditions. They are obtained from (Eq 10) after
eliminating all quantities corresponding to the general
solution. One finally obtains :

TSR
1 (±a) = −

s′

2s
T 2

0 (±a) +
α

s
D0T0(±a) (16)

+
1

2jωs
[A1+(1± 2jθ)e±2jθ + A1−(1∓ 2jθ)e∓2jθ]

+
k

2ωs
[B1+e±jθ −B1−e∓jθ]

As no dielectric nonlinearity has been taken into ac-
count in the model -β′ = 0 in (Eq 1)-, no second-order
current source exists : I1 = Ig

1 . As a consequence, for
the second-order potential, the source is a single source
V S

1 , with :

V S
1 = −

∫ a

−a

[
αs + gs′

2s
T 2

0 (z)−
gα

s
D0T0(z)]dz (17)

+
g

jωs
[(A1+ + A1−)cos(2θ) + j(B1+ −B1−)sin(θ)]

Nonlinear instrumentation chain.

From the previous analysis, the modelling of a non-
linear instrumentation chain is possible by connecting
together nonlinear equivalent schemes associated to pas-
sive or active elements. In order to ilustrate the method,
the electrical equivalent circuits of a nonlinear active
layer coupled at its rear face to a linear semi-infinite
passive medium and at its front face to a nonlinear pas-
sive layer is given in (Fig 4).

Fig. 4: Equivalent circuits of a piezoelectric layer coupled at
rear face to a linear semi-infinite elastic medium and at front

face to a nonlinear passive layer. Connections at A−1 and A′
−1

,

and at A1 and A′
1

represent the acoustical ports of the nonlinear
active layer whereas connections at E1 and E′

1
represent its

electrical port. Connections at A1 and A′
1
, and at A2 and A′

2
are

also the acoustical ports of the nonlinear passive layer. Zp and
Ze are respectively the acoustical impedances of the piezoelectric
and the passive layer. Zr and Zt are respectively the acoustical
impedances of the rear and the terminal semi-infinite media.
Diamonds represent the controlled voltage sources and the

controlled current sources introduced by the quadratic
nonlinearity.

4 Applications.

4.1 Influence of the nonlinearity of the

transducer on NDE measurements.

In length extensionnal mode, the parameter B =
s′

2s2 is a characteristic of the nonlinearity of an elastic
medium. When no source of nonlinearity exists apart
from the one in this medium, it can be deduced from (Eq
14) that B is directly related to the ratio of amplitudes
of the second harmonic component of particle velocity
to the square of the fundamental component at the f
frequency by :

B =
c2|v1(2f)|

πfz|v0(f)|2
(18)

where c is the acoustic wave velocity and z the dis-
tance of propagation in the medium. (Eq 18) gives then



a practical mean to determine the nonlinear parameter
B of a medium by measuring the fundamental and
second harmonic amplitudes.

The influence of sources of nonlinearity in the trans-
ducer on estimation of B parameter is sudied. In order
to be realistic, the nonlinear parameters of the piezoe-
lectric material, a PZT ceramic, are those measured in a
previous study [4]. In order to model a complete trans-
ducer, a backing -considered as a semi-infinite medium-
and a quarter wave length matching layer L are added.
The semi-infinite medium M in front face is defined by
its density, acoustic wave velocity and nonlinear para-
meter B0. A high value of B0 (compared to the value in
quartz [9] in the order of 1 ) is voluntary taken. The den-
sity ρ, the velocity of sound c and nonlinear parameter
B of both passive media are given in (Tab 1).

Tab. 1: Linear and nonlinear constants of the
matching layer L, backing and medium M.

constant L Backing M
ρ (kg.m−3) 2400 2500 7000
c (m.s−1) 5300 4000 3500
B 0 0 50

The amplitudes of fundamental and second harmo-
nic components at different propagation distances z′ in
medium M have been calculated and the nonlinear pa-
rameter B deduced directly from (Eq 18). Results of the
estimations versus the distance are given in (Fig 5). The
case of a nonlinear piezoelectric rod can be compared
to the linear case. As expected, the estimated value of
B, in this last case, is a constant equal to the parame-
ter B0. One can see that the perturbation introduced
by the nonlinearity of the piezoelectric source on the
estimation of B decreases with distance, due to cumu-
lative effects of nonlinearity in the semi-infinite elastic
medium. However, it must be noted that this evolution
is not necessarly monotonous. Thus, one can see that the
perturbation introduced by the nonlinearity of the pie-
zoelectric element can lead either to an over-estimation
or to an under-estimation of the nonlinear parameter B.
This section demonstrates the interest of taking into ac-
count external sources of nonlinearity even if the nonli-
near parameter is relatively high. However, the problem
is to quantify precisely the distortion rate at the output
of the transducer, which can depend on the load.

4.2 Influence of a linear load on the non-

linear behavior of the transducer.

The influence of a linear load on the second har-
monic distortion rate at the output of the transducer
is studied in this paragraph. In order to simplify the
problem, the backing and the matching layer will be
omitted and the piezoelectric element is directly loaded
by the semi-infinite medium defined by its acoustical
impedance Ze compared the acoustical impedance
Zp of the piezoelectric element. The evolution of the
quadratic distortion parameter :
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Fig. 5: Estimated nonlinear parameter B versus distance of
propagation in the material. This distance is normalized to the
wave length λ corresponding to the fundamental frequency f for
different cases of nonlinearity of the source of acoustical waves.

- d(f) = u(2f)/u2(f)

at the loaded face of the piezoelectric element is stu-
died in the vicinity of the resonance frequency f0 as
a function of the load. The influence of the load on
the quadratic distortion parameter d is given in (Fig
6-7) in repective cases of a electromechanical nonlinea-
rity (α �= 0; s′ = 0) and a mechanical nonlinearity
(α = 0; s′ �= 0), the linear parameters of the piezoelec-
tric element being the same as used in the last section.

One can see in (Fig 6) that, below the resonant fre-
quency f0, the parameter d decerases with the load. Ho-
wever, inflexions in the curves appear in the vicinity of
f0 and respective positions of the curves change. As a
result, the distortion parameter d at f0 for Ze/Zp equal
to one reaches two times -6 dB- the value corresponding
to the unloaded case. Similar phenomena appear in the
case of a mechanical nonlinearity (Fig 7). However, in
this case, the changes in the curves appear systemati-
cally for f ≈ 0.85f0. As a consequence, in this case, any
load will enhance the second harmonic generation while
exciting at the resonant frequency f0. Thus, in this case,
the substitution of the material by a lower-impedance li-
near load will automatically lead to under-estimate the
rate of external distortion generated while performing
tests.

5 Conclusion.

It has been demonstrated in this study that equi-
valent circuits based on the hexapole formalism can be
extended to solve the complex problem of nonlinear pro-
pagation in an instrumentation chain with a large num-
ber of nonlinear media. The advantage of this decom-
position is the possibility of using matrix computations,
based on the chain or the transfer matrix, allowing effi-
cient and quick calculations. A first application of this
method has been presented, showing the influence of the
nonlinearity of the transducer on the evaluation of the
nonlinear parameter of an elastic medium. Results have
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Fig. 7: Modulus of the quadratic distortion parameter d(f) at
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shown the need to take into account the nonlinear ef-
fects of the transducer. The problem is to quantify the
distortion rate at the output of the transducer and re-
sults have shown the great influence of the load on the
generated distortion. Moreover, the complexity of inter-
ferences between the secondary waves created by each
source of nonlinearity in a propagation line, as revealed
in this study, demonstrates the interest of disposing of
an efficient method to study the interactions between
nonlinear phenomena.
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