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The last decades, a lot of research has been done about the propagation of sound in heterogeneous
and porous materials. Especially the two-phase nature of the poro-elastic material leads to interesting
physical phenomena. During recent years, several measuring methods have been developeded to determine
the material parameters.
However, a lot of problems aren’t solved yet. Because of the visco-elastic behavior of a lot of these
materials, the elastic moduli will become frequency dependent (rubberlike behavior at low frequencies
and glasslike behavior at high frequencies). Experimental data about the frequency- and temperature
dependence of the elastic moduli are scarce because of experimental difficulties. Some experimental and
numerical results about this subject will be presented.
Porous materials still have to be studied in a lot of configurations. One of them is a porous material in
an elastic cylinder. Some numerical results about the dispersion curves of the wave propagating in the
system will be presented. These will be compared with some experimental results.

1 Introduction

One of the remaining problems in characterizing po-
rous sound absorbing materials is the evaluation of the
elastic parameters of the frame. Since the frame ma-
terials are often viscoelastic, the Lamé coefficients are
frequency dependent. The traditional quasi-static tech-
niques for evaluating these elastic parameters provide
data for a frequency range that is relatively low (up to
500 Hz - 1 kHz). The transfer function method was used
for investigating the complex modulus of a spring like
[1] and rod-like specimen [2], the vibrational response of
a clamped rectangular porous plate was studied in ref
[3] and quasi-static measurement techniques were used
to determine the frequency dependence of the elastic
properties of acoustic foams [4]. Because all these me-
thods focus on the recovery of the elastic constants only
at low frequencies, new methods should be developed.
Wave propagation in a porous semi-infinite half space
(Rayleigh wave), in a porous plate on a rigid surface
(Lamb-like waves) or in a porous plate (Lamb waves)
was studied in [5, 6] and the frequency dependence of
the elastic parameters was determined from these stu-
dies at a few kHz.

In this paper, this idea is explored further and the
circumferential waves on a layered poroelastic cylinder
is studied. Rayleigh waves were largely studied in elas-
tic cylinders, as for example for a duraluminium cy-
linder [7], and an elastic cylinder with elastic coating
[8]. Contrary to the Rayleigh wave in semi-infinite half
space, the latter one is dispersive in circular shape confi-
gurations. Higher velocity modes excists and are called
whispering gallery waves. While the Rayleigh wave pro-
pagates on the surface of the cylinder, whispering gal-
lery waves have displacements more concentrated in the

inner part of the cylinder[9]. The effect of the disper-
sion is particularly visible at low frequencies, the high
frequency limit of the velocities being the Rayleigh velo-
city in a plate of the same material. The following study
constitutes a first brakethrough, to our knowledge, in
the analysis of Rayleigh wave in a porous cylinder.

The rationale behind this work is laboratory scale
foam rising tests in a circular cup, for use by manufac-
turers of chemical components of plastic foams to study
and develop new foam materials. Being able to moni-
tor the elastic parameters while the material is chan-
ging from a liquid mixture to a solid foam (polymeri-
sation) and/or to evaluate the final elastic modulus of
the foam material is of considerable interest. Surface
acoustic waves that propagate in an elastic foam mainly
depend on the density and shear modulus of the frame,
while they are mostly independent of the bulk modulus
for most of these materials [6]. Following the shear mo-
dulus of the foam during its rising, when the chemicals
change from a fluid mixture to a poroelastic foam is a
first possible application of the method described in this
paper. The evaluation of the shear modulus of the final
poroelastic foam once formed is a second application.
These applications hold for the density of the frame.

2 Description of the configura-
tion

The geometrical configuration and the solicitation
are assumed to be invariant with respect to the Carte-
sian coordinate x3.
Figure 1 depicts a cross-sectional plane view of the confi-
guration. The domain Ω[0] is occupied by a fluid medium
material M [0]. The circular cylindrical domain Ω[2] of



Figure 1 – Cross-sectional plane view of the
configuration of a porous cylinder coated by an elastic

shell.

radius R[2] is centered at the origin of the global polar
coordinate system (r,O, θ) attached to the configuration
and is occupied by an elastic porous material M [2] sa-
turated by the fluid M [0]. The latter domain is either
in welded contact with the domain Ω[0] through the in-
terface Γ, or in welded contact with an elastic medium
M [1], occupying the domain Ω[1] of thickness h through
the interface Γ12. In the latter case, Ω[1] is in welded
contact with Ω[0] through the interface Γ at R[2] + h.

3 Rayleigh wave in a circular po-
rous cylinder with and without
elastic coating

The aim of this section is to determine the roots of
the dispersion relation in order to evaluate the whis-
pering gallery waves and Rayleigh wave velocities in a
porous cylinder coated or not by an elastic shell. The
problem reduces to the evaluation of the driving agent
matrix, i.e. the matrix which is formed by the elements
that arise when the field expressions are introduced in
the boundary conditions.

3.1 Field representations and material
modeling

In Ω[0], the scattered pressure field can be written
as :

p[0](x) =
∑
n∈Z

BnH(1)
n

(
k[0]r

)
einθ . (1)

wherein H(1)
n is the n-th order Hankel function of first

kind and Bn are the scattered coefficients by the circular
cylinder.

In Ω[1], the scattered scalar φ[1] and vector ψ[1] =
ψ[1]i3 potentials, related to the displacement u[1]

through u[1] = ∇φ[1] +∇× ψ[1] take the forms :
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wherein Jn is the n-th order Bessel function.

In Ω[2], the scattered scalar φ
[2]
1 and φ

[2]
2 and vector

ψ[2] = ψ[2]i3 potentials, related to the displacement u[2]

in the solid phase through u[2] = ∇
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Expressions of µi and k
[2]
i (i=1, 2, 3) can be found

in ref [10].

3.2 Circular porous cylinder saturated
by air

Since M [0] is fluid and M [2] is a porous material, the
normal total stress, pressure and normal component of
the displacement should be continuous across Γ (r =
R[2], ∀θ ∈ [0, 2π], the definition of r and θ is shown in
figure 1) :

σsrr(R
[2], θ) + σfrr(R

[2], θ) + p[0](R[2], θ) = 0 ,

σsrθ(R
[2], θ) = 0 ,

−σ
f
rr(R

[2], θ)

φ
− p[0](R[2], θ)) = 0 ,

u[2]r (R[2], θ) + w[2]
r (R[2], θ)− U [0]

r (R[2], θ) = 0 ,

(4)

wherein w[2] = φ
(
U[2] − u[2]

)
is the relative fluid

displacement [11].

3.3 Circular porous cylinder coated by
an elastic medium

Since M [0] is fluid and M [1] is an elastic material,
the normal stress and normal component of the displa-
cement should be continuous across Γ (r = R[2] + h,
∀θ ∈ [0, 2π]) :

σ[1]
rr (R[2] + h, θ) + p[0](R[2] + h, θ) = 0 ,

σ
[1]
rθ (R[2] + h, θ) = 0 ,

u
[1]
r (R[2] + h, θ)− U [0]

r (R[2] + h, θ) = 0 ,

(5)

Since M [1] is a elastic material and M [2] is a porous
material, the normal total stress and the displacements
should be continuous across Γ12 (r = R[2], ∀θ ∈ [0, 2π]) :

σsrr(R
[2], θ) + σfrr(R

[2], θ)− σ[1]
rr (R[2], θ) = 0 ,

σsrθ(R
[2], θ)− σ[1]

rθ (R[2], θ) = 0 ,

u
[2]
r (R[2], θ)− u[1]r (R[2], θ) = 0 ,

u
[2]
θ (R[2], θ)− u[1]θ (R[2], θ) = 0 ,

u
[2]
r (R[2], θ)− U [2]

r (R[2], θ) = 0

(6)

Introducing the proper field and potentials expres-
sions in Eq.(4, 5 , 6 ) , projecting the latter such that



∫ 2π

0

·×e−ilθdθ and making use of the orthogonality rela-

tion

∫ 2π

0

·×ei(n−l)θ = 2πδln, leads, after rearrangement,

to a driving agent D.

3.4 Numerical evaluation of the roots of
the dispersion curves

The determinant of D calculated as a function of the
frequency f and of the order of the bessel and hankel
functions n. The minima of its absolute value are then
evaluated in first approximation. From couples (fmin,
nmin) for which |det(D)| is minimum, the phase velo-
city of the corresponding modes is evaluated through
2πfminR/nmin in the case of a porous cylinder and
through 2πfmin(R+h/2)(1+ h

2(R+h/2) )/nmin in the case

of a porous cylinder with elastic coating [8].
The dispersion curves as calculated with the pre-

viously described algorithm were validated in the case of
a duraluminium cylinder by matching the results with
those found in [7]. Without dissipation, the minima of
|det(D)| agree with the roots of det(D) = 0. For porous
material cylinders, the phase velocity should be complex
rigurously. Nevertheless, it becomes difficult to solve
this, because it imposes to use complex order Hankel and
Bessel functions, in order to evaluate complex velocities
of the modes [12]. The evaluation is not straightforward
and largely increase the calculation time.

4 Numerical results and discus-
sion

Contrary to the Rayleigh wave on a flat surface, the
Rayleigh type wave on a cylinder exhibits geometrical
dispersion, which should be distinguished from the ma-
terial dispersion of the porous core.

At low frequencies, the phase velocity depends on
the frequency, its high frequency limit being the Ray-
leigh velocity in semi-infinite half space of the material.
This can clearly be noticed in figures 2 and 3. The mode
with the lowest velocity values is the Rayleigh wave. The
others are the whispering gallery waves. These waves
arise due to the finite curvature of the surface. They
are associated with the material properties of the elas-
tic cylinder, and can be represented in a ray model as
multiple reflections around the inner surface of the cy-
linder. These whispering gallery waves present a cut-off
frequency, below which they can not propagate in the
material because they are highly damped.

The porous material studied in this paper is Fire-
flex (Recticel, Wetteren, Belgium), whose parameters
are reported in table 1 and were determined by tradi-
tional methods[13]. The radius of the ciruclar cylinder
is R[2] = 75 mm.

4.1 Numerical results for porous cylin-
der saturated by air

In this section the influence of the Biot parameters
on the dispersion curves is studied in case of a porous
cylinder saturated by air.

Figure 2 – Influence of (a) the porosity, (b) the
tortuosity and (c) the flow resistivity on the dispersion

curves of different modes propagating in a Fireflex
cylinder of radius R[2] = 75 mm. The other parameters

are kept constant to those of Table 1.

Figure 3 – Influence on the dispersion curves of the
different modes propagating in a Fireflex cylinder of

radius R[2] = 75 mm of the shear modulus (a) :
N = 105 Pa (−−−) and N = 106 Pa (—) and density
(b) : ρ =30 kg.m−3 (−−−) and ρ =100 kg.m−3 (—).

For each simulation that corresponds to figure 2, one
parameter is varied, while the other parameters (Biot
and others, like the density) are kept constant. The dis-
persion curves, for the different material parameters can
not be clearly distinguished, figure 2. Apparently the
porosity, tortuosity and flow resistivity have a small in-
fluence on the Rayleigh wave velocity, whose high fre-
quency limit is 40 m.s−1. The same can be said for the
influence on the velocity of the whispering gallery waves.
This lake of sensitivity can be expected because the Ray-
leigh velocity is mainly determined by the density and
elasticity of the material, the Rayleigh wave mainly pro-
pagating in the skeleton.

This can be seen in figures 3 (a) and (b) where the
shear modulus and density of the porous cylinder were
varied while all other parameters were kept constant.
When the shear modulus increases or the density de-
creases, the phase velocity of the modes increases.

This method can also not be used to characterize the
acoustical and structural parameters, but it can be used
to determine the elastic properties of the foam. Since
there is a clear difference in the dispersion curves for
foams with different shear modulus, it will be possible
to follow the shear modulus during the foam formulation
with this technique.



Figure 4 – Phase velocity of the modes in a porous
cylinder, with a shear modulus of 5 104 Pa (−−−)
and 105 Pa (—), coated with (a) a plexiglass shell or

(b) a steel shell.

4.2 Numerical simulations for a porous
cylinder with an elastic coating

Due to the presence of the elastic coating, it can be
expected that the sensitivity of the dispersion curves to
the value of the elastic modulus of the porous core de-
pends on the coating thickness and properties. If the
coating thickness is small when compared with the wa-
velength or better when compared with the penetration
depth of the quasi-Rayleigh wave, the quasi-Rayleigh
wave should depend on the porous properties. In other
words, it means that if the configuration is sollicited
at a sufficiently low frequency, the quasi-Rayleigh wave
should depend on the porous material properties. Va-
rious coating thicknesses and coating materials are also
tested in order to determine the combination from which
the maximum of information on the properties of the
porous foam can be expected.

Simulations were performed for a porous cylinder
of Fireflex with a shear modulus of 5 104 Pa and 105

Pa and an elastic coating of plexiglass (C
[1]
P = C

[1]
S =

1120 m.s−1 and ρ[1] = 1180 kg.m−3) and steel (C
[1]
P =

C
[1]
S = 3230 m.s−1 and ρ[1] = 7700 kg.m−3) of thickness

h = 1 mm, figure 4. When the shear modulus of the po-
rous material increases, the phase velocities increases.
For both steel and plexiglass coating, the waves veloci-
ties are clearly different between a porous material with
a shear modulus of 5 104 Pa and 105 Pa. Thus that both
a steel and plexiglass coating can be used to determine
the shear modulus of the porous cylinder. It also follows
that the shear modulus can be determined during the
formation process of the foam.

The same has been done to investigate the sensiti-
vity of the dispersion curves to the density of the po-
rous cylinder. Simulations were performed for a porous
cylinder with densities of 30 and 100 kg.m−3 with both
a plexiglass and steel coating, (figure 5). The modes can
be clearly distinguished for both the steel and plexiglass
coating between density of 30 kg.m−3 and 100 kg.m−3

porous material.

4.3 Experimental methods

Two experimental methods are used to determine
the dispersion curves of the modes propagating in the
system.
The experimental principle consists in generating cir-
cumferential waves on the surface of a porous sample
with the help of a shaker and in detecting the normal

Figure 5 – Phase velocity of the modes of a porous
cylinder, with density of 30 kg.m−3 (−−−) and 100

kg.m−3 (—), coated with (a) a plexiglass shell and (b)
a steel shell.

Figure 6 – Measurement set up for the determination
of the phase velocity of the modes.

component of the surface velocity with a Laser vibro-
meter (Polytec OFV-505), after the waves have travel-
led some distance. A cylindrical sample of 15 cm dia-
meter is placed on a circular rotating plate (Figure 6),
the axis of the cylinder coinciding with the one of the
disk. The shaker is attached to the sample so that there
is no relative motion between them. The shaker used
is fairly small and light and can provide signals at fre-
quencies up to 10 kHz. The distance between the source
and the detection point can be varied by rotating the
set shaker/sample while the laser beam is not moved.
The rotation angle of the sample can be controlled with
precision with the help of wire connecting the periphery
of the circular disk to a computer controlled translation
stage.

A narrow strip of steel (0.5 x 3 cm) glued to the
shaker is used as line source to generate circumferential
waves on the cylindrical sample (the strip is parallel
to the axis of the cylinder). The surface velocity is
measured with a laser beam coming from a laser
Doppler vibrometer. A narrow strip of reflecting tape
of negligible thickness is glued on the surface of the
cylinder so that the circumferential waves can be
detected at different positions on the surface.

Two different ways of excitation were used. In a first
excitation method, sine burstwaves are used to excite
the sample. The phase velocity is obtained from the
slope of the curve which is obtained by plotting the dis-
tances as a function of the arrival times. A more detailed
description of this method can be found in [5, 6].
In a second excitation method, a pulse is used to ex-
cite the sample. The technique consists in recording the
time signals on a digital oscilloscope at regular intervals
of distance. It is therefore possible to create a two di-
mensional array s(x,t) providing values of the signal at
different times and distances. If the resolution in time



Figure 7 – Experimental (triangle : pulse excitation,
square : burst excitation) and theoretical (full line)
dispersion curves for a porous cylinder of Fireflex.

and in space are appropriately chosen, the dispersion
curves are directly obtained by taking the double time
and space Fourier Transform, thus providing a function
S(k, ω). The phase velocities of the modes can be de-
termined by v = ωk. The line is a mode which can be
detected.

4.4 Experimental results

The experimental (triangle : pulse excitation,
square : burst excitation) and theoretical (circle) disper-
sion curves for a porous cylinder of Fireflex (the proper-
ties of the material are given in Table 1) with a radius of
7.5 cm are plotted in figure 7. With both experimental
methods, the mode with lowest phase velocity is obser-
ved for frequencies lower than 4000 Hz. In the asymp-
totic high frequency regime, the phase velocity of this
mode equal the Rayleigh velocity of the material. This
is the Rayleigh mode. Both the theory and experiments
provide a Rayleigh velocity close to 40 m.s−1. The shear
modulus used in the theoretical simulation was determi-
ned by measuring the Rayleigh velocity on a flat surface
[14].

For higher frequencies, the burst method cannot be
used due to the proximity of other modes resulting in
mixing of the modes in the time signals.

5 Conclusions

A theoretical model was developed for the configu-
ration of a porous cylinder with and without elastic coa-
ting. The influence of the Biot paramters of the porous
material on the dispersion curves of the modes was stu-
died. Structural parameters like the tortuosity, flow re-
sistivity and porosity do not influence the phase velo-
city in a significant way and this influence will not be
detectable experimentally. The shear modulus and den-
sity on the other hand influence the phase velocities of
the modes in an important way. Simulations were made
with a porous cylinder of Fireflex and an elastic coating
of steel and plexiglas. In both cases, when the shear mo-
dulus of the porous cylinder was varied, the change of
the dispersion curves could clearly be seen. This means
that this method can be used to determine the shear
modulus and the shear modulus can be followed during
the rising of the foam. The same simulations were made
for the density of the porous cylinder. There could also

be concluded that the density can be followed during
the rising of the foam.

Two measurement techniques were used to deter-
mine the phase velocities of the modes propagating in
the case of a Fireflex porous cylinder without coating,
using respectively burst excitation and pulse excitation.
The first method can not be used for frequencies hi-
gher than 4000 Hz due to the proximity of other modes
resulting in mixing of the modes in the time signals.
Measurements were done for a porous cylinder of Fire-
flex without coating. A good agreement with numerical
simulations was found. Both the experiment and nume-
rical simulations resulted in a Rayleigh velocity around
40 m.s−1.
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Table 1 – Sample parameters of the porous samples
studied in this paper, determined by the methods

described in[13].

Fireflex

R[2] (mm) 75
ρ(kg.m−3) 32

φ 0.95
α∞ 1.42

σ (Ns.m−4) 8900
Λ (µm) 180
Λ′ (µm) 360
N (Pa) 56000
E (Pa) 140000


