Random Excitation by Optimized Pulse Inversion in Contrast Harmonic Imaging

Sébastien Ménigot and Jean-Marc Girault

Université François Rabelais de Tours
Inserm U930 - Imaging and Brain
Team 5 - Imaging and Ultrasound
Tours, France

April 26th, 2012
Outline

1. Introduction
 - Ultrasound Contrast Imaging
 - Pulse Inversion Imaging
 - Problematic

2. Random Excitation
 - Principle
 - Simulation Model
 - Results for linear system
 - Results for nonlinear pulse inversion imaging system

3. Parametric Optimization
 - Implementation
 - Results

4. Conclusions & Prospects
Introduction
Ultrasound Contrast Imaging

Contrast Agents

- Injection of contrast agents \Rightarrow perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 μm
- High nonlinear behavior

Contrast to Tissue Ratio

$$CTR = \frac{E_{\text{microbubbles}}}{E_{\text{tissue}}}$$

[F. Tranquart]
Contrast Agents

- Injection of contrast agents \Rightarrow perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 µm
- High nonlinear behavior

Contrast to Tissue Ratio

$$CTR = \frac{E_{\text{microbubbles}}}{E_{\text{tissue}}}$$

[F. Tranquart]
Ultrasound Contrast Imaging

Contrast Agents

- Injection of contrast agents \Rightarrow perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 μm
- High nonlinear behavior

Contrast to Tissue Ratio

$$CTR = \frac{E_{\text{microbubbles}}}{E_{\text{tissue}}}$$

[F. Tranquart]
Contrast Agents

- Injection of contrast agents \Rightarrow perfusion imaging
- Encapsulated microbubbles: mean diameter between 1 to 10 μm
- High nonlinear behavior

Contrast to Tissue Ratio

$$CTR = \frac{E_{microbubbles}}{E_{tissue}}$$
Ultrasound Contrast Imaging

Contrast to Tissue Ratio

$$CTR = \frac{E_{microbubbles}}{E_{tissue}}$$

[F. Tranquart]
Ultrasound Contrast Imaging

Contrast to Tissue Ratio

\[CTR = \frac{E_{\text{microbubbles}}}{E_{\text{tissue}}} \]

[F. Tranquart]
Ultrasound Contrast Imaging

Ultrasound Contrast Harmonic Imaging

- Transmitted Signal
- Emission Tx
- Medium
- Reception Rx
- Image

Ultrasound Harmonic Imaging using post-processing

Transmission

Reception

Image

Criterion
Ultrasound Contrast Imaging

Ultrasound Contrast Harmonic Imaging

Encoding Harmonic Imaging

Transmitted Signal → Emission Tx → Medium → Reception Rx → Image

Post-processing

Transmission

Reception

Image

Criterion

Ménigot & Girault (Tours, France)
Pulse Inversion Imaging

Pulse Inversion Method

- Emission (Tx)
- Delay τ
- Phase Inversion
- Medium
- Reception (Rx)
- Image

Transmission

Reception

Pulse Inversion

Extraction of even harmonic components

Criterion

Ménigot & Girault (Tours, France)
What is the best command to optimize the criterion?
Random Excitation
Principle of Random Excitation

Principle of Implementation

1. Find the input signal $x(t)$ of the pulse inversion imaging system
2. Optimize the CTR
3. Random search by Monte-Carlo method
Principle of Random Excitation

1. Find the input signal $x(t)$ of the pulse inversion imaging system
2. Optimize the CTR
3. Random search by Monte-Carlo method
Principle of Random Excitation

1. Find the input signal $x(t)$ of the pulse inversion imaging system
2. Optimize the CTR
3. Random search by Monte-Carlo method
Principle of Random Excitation

Principle of Implementation

1. Find the input signal $x(t)$ of the pulse inversion imaging system
2. Optimize the CTR
3. Random search by Monte-Carlo method
Simulation Model

Simulation Properties

- Transducer centred at $f_c = 3$ MHz
- Microbubble
 - Free simulation software Bubblesim [Hoff, 2001]
 - Modified Rayleigh-Plesset Equation
 - Diameter: 2.5 μm
 - Shell thickness: 1 nm
 - Resonance Frequency: 3.1 MHz
- Tissue: Rayleigh diffusion
Simulation Model

Simulation Properties

- Transducer centred at $f_c = 3$ MHz
- Microbubble
 - Free simulation software Bubblesim [Hoff, 2001]
 - Modified Rayleigh-Plesset Equation
 - Diameter: 2.5 µm
 - Shell thickness: 1 nm
 - Resonance Frequency: 3.1 MHz
- Tissue: Rayleigh diffusion
Simulation Model

Simulation Properties

- Transducer centred at $f_c = 3 \text{ MHz}$
- Microbubble
 - Free simulation software Bubblesim [Hoff, 2001]
 - Modified Rayleigh-Plesset Equation
 - Diameter: 2.5 μm
 - Shell thickness: 1 nm
 - Resonance Frequency: 3.1 MHz
- Tissue: Rayleigh diffusion
Results for linear system: Optimization of microbubble power
Results for nonlinear pulse inversion imaging system
Results for nonlinear pulse inversion imaging system

- Normalized Pressure
- Time (μs)

- $f_{opt} = 2.5$ MHz
- $CTR = 30.4$ dB
Results for nonlinear pulse inversion imaging system

\[f_{opt} = 2.5 \text{ MHz} \]
\[CTR = 30.4 \text{ dB} \]

\[CTR = 31.4 \text{ dB} \]

1 million of tests
Parametric Optimization
Implementation of the Parametric Optimization

1. Choice of the Cost Function $J(\theta)$
2. Choice of the parameters θ
3. Choice of the optimization algorithm
Implementation of the Parametric Optimization

Setting of Iterative Optimization

1. Choice of the Cost Function $J(\theta)$

2. Choice of the parameters θ

3. Choice of the optimization algorithm
Implementation of the Parametric Optimization

Setting of Iterative Optimization

1. Choice of the Cost Function $J(\theta)$
2. Choice of the parameters θ
3. Choice of the optimization algorithm
Implementation of the Parametric Optimization

Setting of Iterative Optimization

1. Choice of the Cost Function $J(\theta)$
2. Choice of the parameters θ
3. Choice of the optimization algorithm
Implementation of the Parametric Optimization

1. Choice of the Cost Function $J(\theta) \rightarrow CTR$
2. Choice of the parameters θ
3. Choice of the optimization algorithm

Setting of Iterative Optimization
Implementation of the Parametric Optimization

Optimization Setting

1. Maximization of the CTR
2. Input signal described by autoregressive model

\[\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i)x(t - i) \]

3. Nelder-Mead’s Algorithm based on simplex
Implementation of the Parametric Optimization

Optimization Setting

1. Maximization of the CTR

2. Input signal described by autoregressive model

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i)x(t - i)$$

3. Nelder-Mead’s Algorithm based on simplex
Implementation of the Parametric Optimization

Optimization Setting

1. Maximization of the CTR
2. Input signal described by nonlinear autoregressive model (NAR)

\[\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i)x(t - i) + \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i, j)x(t - i)x(t - j) + \cdots \]

3. Nelder-Mead’s Algorithm based on simplex
Implementation of the Parametric Optimization

Optimization Setting

1. Maximization of the CTR

2. Input signal described by nonlinear autoregressive model (NAR)

\[
\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i)x(t - i) \\
+ \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i,j)x(t - i)x(t - j) + \cdots
\]

Order $K = 3$ and memory $M = 3 \Rightarrow 19$ parameters

3. Nelder-Mead’s Algorithm based on simplex
Implementation of the Parametric Optimization

Optimization Setting

1. Maximization of the CTR

2. Input signal described by nonlinear autoregressive model (NAR)

\[
\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i)x(t - i) \\
+ \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i, j)x(t - i)x(t - j) + \cdots
\]

Order $K = 3$ and memory $M = 3 \Rightarrow 19$ parameters

Drawback: what is the signal $x(t)$?

3. Nelder-Mead’s Algorithm based on simplex
Implementation of the Parametric Optimization

Optimization Setting

1. Maximization of the CTR

2. Input signal described by nonlinear autoregressive model (NAR)

\[
\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i)x(t - i) \\
+ \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i, j)x(t - i)x(t - j) + \cdots
\]

Order \(K = 3 \) and memory \(M = 3 \) \(\Rightarrow \) 19 parameters

Drawback: what is the signal \(x(t) \) ?

\(\Rightarrow \) Optimal Input Signal obtained randomly

3. Nelder-Mead’s Algorithm based on simplex
Implementation of the Parametric Optimization

Optimization Setting

1. Maximization of the CTR

2. Input signal described by nonlinear autoregressive model (NAR)

$$\hat{x}(t) = \sum_{i=0}^{M-1} h_1(i)x(t - i)$$

$$+ \sum_{i=0}^{M-1} \sum_{j=i}^{M} h_2(i, j)x(t - i)x(t - j) + \cdots$$

Order $K = 3$ and memory $M = 3 \Rightarrow 19$ parameters

Drawback: what is the signal $x(t)$?

\Rightarrow Optimal Input Signal obtained randomly

3. Nelder-Mead’s Algorithm based on simplex
Results with Parametric Optimization

<table>
<thead>
<tr>
<th></th>
<th>Pulse</th>
<th>Random</th>
<th>Random with Parametric Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>30.4 dB</td>
<td>31.4 dB</td>
<td></td>
</tr>
</tbody>
</table>

Ménigot & Girault (Tours, France)
Results with Parametric Optimization

<table>
<thead>
<tr>
<th></th>
<th>Pulse</th>
<th>Random</th>
<th>Random with Parametric Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>30.4 dB</td>
<td>31.4 dB</td>
<td>31.5 dB</td>
</tr>
</tbody>
</table>
Results with Parametric Optimization

<table>
<thead>
<tr>
<th></th>
<th>Pulse</th>
<th>Random</th>
<th>Random with Parametric Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>30.4 dB</td>
<td>31.4 dB</td>
<td>31.5 dB</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>Random with Parametric Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>30.5 dB</td>
<td></td>
</tr>
<tr>
<td>N_{test}</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>Random with Parametric Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>30.5 dB</td>
<td>31.3 dB</td>
</tr>
<tr>
<td>N_{test}</td>
<td>15</td>
<td>2165</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>Random with Parametric Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>30.5 dB</td>
<td>31.3 dB</td>
</tr>
<tr>
<td>N_{test}</td>
<td>15</td>
<td>258</td>
</tr>
</tbody>
</table>
Comparison

<table>
<thead>
<tr>
<th></th>
<th>Random</th>
<th>Random with Parametric Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTR</td>
<td>30.5 dB</td>
<td>31.3 dB</td>
</tr>
<tr>
<td>N_{test}</td>
<td>15</td>
<td>2165</td>
</tr>
</tbody>
</table>

Ménigot & Girault (Tours, France)
Conclusion & Prospects
Conclusion & Prospects

- Know the optimal shape of the optimal command
- Random process without *a priori* knowledge of the medium
- Suboptimal excitation by combination between random process and parametric optimization
- Decrease test number
- Prospects:
 - Analysis the optimal excitation
 - Find the optimal command by metaheuristic
Conclusion & Prospects

- Know the optimal shape of the optimal command
- Random process without \textit{a priori} knowledge of the medium
- Suboptimal excitation by combination between random process and parametric optimization
- Decrease test number
- Prospects:
 - Analysis the optimal excitation
 - Find the optimal command by metaheuristic
Conclusion & Prospects

- Know the optimal shape of the optimal command
- Random process without *a priori* knowledge of the medium
- Suboptimal excitation by combination between random process and parametric optimization
- Decrease test number
- Prospects:
 - Analysis the optimal excitation
 - Find the optimal command by metaheuristic
Conclusion & Prospects

- Know the optimal shape of the optimal command
- Random process without *a priori* knowledge of the medium
- Suboptimal excitation by combination between random process and parametric optimization
- Decrease test number
- Prospects:
 - Analysis the optimal excitation
 - Find the optimal command by metaheuristic
Conclusion & Prospects

- Know the optimal shape of the optimal command
- Random process without *a priori* knowledge of the medium
- Suboptimal excitation by combination between random process and parametric optimization
- Decrease test number

Prospects:
- Analysis the optimal excitation
- Find the optimal command by metaheuristic
Conclusion & Prospects

- Know the optimal shape of the optimal command
- Random process without *a priori* knowledge of the medium
- Suboptimal excitation by combination between random process and parametric optimization
- Decrease test number
- Prospects:
 - Analysis the optimal excitation
 - Find the optimal command by metaheuristic
Thank you for your attention

sebastien.menigot@univ-tours.fr
jean-marc.girault@univ-tours.fr