Ultrasound contrast agents modeling using an extended Volterra model

F.Sbeity ¹ J.-M.Girault.¹ S. Ménigot ¹ J.Charara ²

¹Université François Rabelais, Tours INSERM U930: Imagerie et cerveau

²Lebanese University

26 April 2012

Fatima Sbeity (UFR, INSERM U930)

Acoustics 2012

26 April 2012 1 / 17

Summary

Introduction

Ultrasound imaging Ultrasound contrast imaging Limitations and solutions Sub and ultra harmonic imaging

Volterra model

- Extended Volterra model
- Simulation results

Conclusion and perspectives

Ultrasound imaging

Emission and reception at the same frequency

・ロト ・ 日 ・ ・ 日 ・

Ultrasound Conrast Agents (UCA)

- ► Gaz microbubbles: mean diameter 1 to 10µm
- Injection in the venous circualtion
- Nonlinear behavior: generation of harmonics

Harmonic imaging

- Harmonic imaging: emission at the frequency f and reception at the first harmonic 2f
- Contrast enhancement

・ロト ・ 理ト ・ ヨト ・

Ultrasound Conrast Agents (UCA)

- ► Gaz microbubbles: mean diameter 1 to 10µm
- Injection in the venous circualtion
- Nonlinear behavior: generation of harmonics

Harmonic imaging

- Harmonic imaging: emission at the frequency f and reception at the first harmonic 2f
- Contrast enhancement

Ultrasound Conrast Agents (UCA)

- ► Gaz microbubbles: mean diameter 1 to 10µm
- Injection in the venous circualtion
- Nonlinear behavior: generation of harmonics

Harmonic imaging

- Harmonic imaging: emission at the frequency f and reception at the first harmonic 2f
- Contrast enhancement

Ultrasound Conrast Agents (UCA)

- ► Gaz microbubbles: mean diameter 1 to 10µm
- Injection in the venous circualtion
- Nonlinear behavior: generation of harmonics

Harmonic imaging

Harmonic imaging: emission at the frequency f and reception at the first harmonic 2f

Contrast enhancement

(日) (四) (日)

Ultrasound Conrast Agents (UCA)

- ► Gaz microbubbles: mean diameter 1 to 10µm
- Injection in the venous circualtion
- Nonlinear behavior: generation of harmonics

Harmonic imaging

- Harmonic imaging: emission at the frequency f and reception at the first harmonic 2f
- Contrast enhancement

< ロト < 同ト < ヨト

(日)

The optimal postprocessing is the Volterra/NARMA filtering include just after slide 9 and 10

Fatima Sbeity (UFR, INSERM U930)

Acoustics 2012

26 April 2012 4 / 17

Limitations and solutions

However, whatever the used postprocessing technique, there are some limitations: Limitations

▶ Non linearity of tissue ⇒ Contrast reduction

Solutions in postprocessing point of view

- Super harmonic imaging
- Sub and ultra harmonic imaging

イロト イポト イヨト イ

Limitations and solutions

However, whatever the used postprocessing technique, there are some limitations: Limitations

 \blacktriangleright Non linearity of tissue \Rightarrow Contrast reduction

Solutions in postprocessing point of view

- Super harmonic imaging
- Sub and ultra harmonic imaging

< □ > < 同 > < 回 > <

Limitations and solutions

However, whatever the used postprocessing technique, there are some limitations: Limitations

 \blacktriangleright Non linearity of tissue \Rightarrow Contrast reduction

Solutions in postprocessing point of view

- Super harmonic imaging
- Sub and ultra harmonic imaging

Sub and ultra harmonic imaging

・ロト ・聞と ・注と ・注と

Summary

Introduction

Ultrasound imaging Ultrasound contrast imaging Limitations and solutions Sub and ultra harmonic imaging

Volterra model

Extended Volterra model

Simulation results

Conclusion and perspectives

Volterra model

- Nonlinear polynomial filter
- Efficient to model nonlinear systems

m: memory of the model

・ロト ・日 ・ ・ ヨ ・ ・

Volterra model

- Nonlinear polynomial filter
- Efficient to model nonlinear systems

m: memory of the model

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

Volterra model

Emission frequency: 4 MHz

- Efficient to extract harmonics
- Problematic: Unable to extract sub and ultra harmonics

(日)

Summary

Introduction

Ultrasound imaging Ultrasound contrast imaging Limitations and solutions Sub and ultra harmonic imaging

Volterra model

Extended Volterra model

Simulation results

Conclusion and perspectives

Extended Volterra model

As Volterra model does not work, we propose to extend its formulation to sub and ultra harmonics

Sub and ultraharmonic modeling and extraction

Summary

Introduction

Ultrasound imaging Ultrasound contrast imaging Limitations and solutions Sub and ultra harmonic imaging

Volterra model

Extended Volterra model

Simulation results

Conclusion and perspectives

Simulation results

Emmision frequency: f = 4MHz

26 April 2012 13 / 17

Relative mean square error **RMSE** between the microbubble backscattered signal and the modeled signals

Model	Standard Volterra	Extended Volterra
RMSE (dB)	-7.8	-11.5

Summary

Introduction

Ultrasound imaging Ultrasound contrast imaging Limitations and solutions Sub and ultra harmonic imaging

Volterra model

Extended Volterra model

Simulation results

Conclusion and perspectives

Conclusion

Extended Volterra model is able to:

Model microbubble signal in presence of sub and ultraharmonics

- Extract and separate sub and ultraharmonic signal
- Make possible to realize sub and ultra harmonic imaging

Perspectives

Separate sub harmonic components apart of ultra harmonic components

(日) (四) (三)

Conclusion

Extended Volterra model is able to:

- Model microbubble signal in presence of sub and ultraharmonics
- Extract and separate sub and ultraharmonic signal
- Make possible to realize sub and ultra harmonic imaging

Perspectives

Separate sub harmonic components apart of ultra harmonic components

(日) (四) (三)

Conclusion

Extended Volterra model is able to:

- Model microbubble signal in presence of sub and ultraharmonics
- Extract and separate sub and ultraharmonic signal
- Make possible to realize sub and ultra harmonic imaging

Perspectives

Separate sub harmonic components apart of ultra harmonic components

(日) (四) (三)

Conclusion

Extended Volterra model is able to:

- Model microbubble signal in presence of sub and ultraharmonics
- Extract and separate sub and ultraharmonic signal
- Make possible to realize sub and ultra harmonic imaging

Perspectives

Separate sub harmonic components apart of ultra harmonic components

< ロト < 同ト < ヨト

Thank you for your attention

Any questions?