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The effective shear-wave speed c in 2D phononic crystals is considered. The two-sided explicit bounds
converging to the exact value of c from above and below are obtained via the plane-wave expansion and
the monodromy-matrix methods. Convergence of the latter method is uniformly faster than of the former
one. Comparative examples of using both methods of evaluating c are presented.

1 Introduction

The paper analyses two methods of calculation of
the effective (quasistatic) speed c of shear waves in 2D
phononic crystals: one is a common approach of plane
wave expansion (PWE) [1], the other is based on the
monodromy matrix (MM) [2, 3]. For each method, we
define the upper and lower bound sequences which mono-
tonically converge to the exact value of c. It is estab-
lished that, for any fixed step, the pair of MM bounds
lies in between the PWE bounds and thus provides a
more accurate capture of the exact c. The proofs of the
main theoretical results of the paper are omitted and
will be reported elsewhere; instead we present a number
of diagrams of the MM and PWE bounds of effective
speed versus concentration of inclusions for several ex-
amples of two- and three-phase periodic lattices.

2 Background

We consider the wave equation

Cu ≡ −∇ · µ∇u = ρω2u. (2.1)

Here µ and ρ are real positive 1-periodic functions

µ, ρ(x + ei) = µ, ρ(x),

∀x ∈ R2, ∀i = 1, 2; ei = (δij)
2
j=1 (2.2)

with Kronecker symbol δ. Using standard procedure
of decomposition into the direct integral (see e.g. [5])
reveals that C is unitarily equivalent to the operator∫ ⊕
k∈[−π,π]2

C(k) with C(k) = −(∇ + ik) · µ(∇ + ik) act-

ing in L2([0, 1]2) (the space of quadratic-summable func-
tions on [0, 1]2). It can be shown that C(k) has purely
discrete spectrum ω2

1(k) 6 ω2
2(k) 6 ..., where ωn(k)

are called Floquet branches. Note that ω1(0) = 0 is
an eigenvalue of C(0) with multiplicity 1 and the cor-
responding eigenfunction is v1 ≡ const. The effective
speed is introduced as

c(κκκ) = lim
k→0

ω1(k)

k
, where k = kκκκ, ‖κκκ‖ = 1. (2.3)

Using expansion

C(k) = C0 + kC1 + k2C2, C0v = −∇ · µ∇v,
C1v = −iκκκ · µ∇v − i∇ · µκκκv, C2v = µv (2.4)

and applying the perturbation theory to (2.1) defines
c(kkk) by the formula

c2(κκκ) =
〈µ〉 − (C1C−1

0 C1v1, v1)

〈ρ〉
≡ κκκ ·µµµeffκκκ

〈ρ〉
, (2.5)

where (u, v) = 〈uv〉 denotes the standard scalar product
in L2([0, 1]2) and 〈·〉 =

∫
[0,1]2

·dx is averaging. The real

matrix µµµeff is uniquely determined by (2.5). This for-
mula requires calculation of the inverse of operator C(0),
which in general has no exact representation except for
some special cases (see an example in Appendix).

Hereafter we restrict consideration to the typical case
of µ satisfying cubic symmetry µ(σσσ·) = µ(·), where σσσ is
a matrix of rotation by π

2 . In this case

µµµeff = µeffI (2.6)

(I is 2 × 2 identity matrix) and hence effective speed
c2 = µeff/〈ρ〉 does not depend on κκκ.

Assumption of cubic symmetry allows us to use the
following property (see [4]). Consider the problem

C̃u ≡ −∇ · µ−1∇u = ρω2u. (2.7)

Then the corresponding effective speed is c̃2 = µ̃eff/〈ρ〉
with

µ̃eff = µ−1
eff . (2.8)

Note that formula (2.8) and thus the results of §3 can
be modified for a general anisotropic case where µµµeff is
a matrix.

3 Two-sided estimates of µeff

3.1 PWE method

This method is based on using the formula (2.5) with
C0, C1 restricted to the space of first (2N + 1)2 simple
harmonics e2πig·x. For any function r ∈ L2([0, 1]2) we
denote its Fourier coefficients as r̂, i.e.

r(x) =
∑
g∈Z2

r̂(g)e2πig·x. (3.9)

Introduce the finite matrix and vector

CNN ≡ (µ̂(g − g′)g · g′)g,g′∈SN
,

fNN = (µ̂(g)g1)g∈SN
, (3.10)

where

SN = {g = (g1, g2) ∈ Z2 \ {0} : |gj | 6 N, j = 1, 2}.
(3.11)

Define
µNN = 〈µ〉 − fNN · C−1

NN fNN , (3.12)

see [1]. Doing the same with function µ̃ ≡ µ−1 we define
µ̃NN . Now we formulate the first result.

Theorem 3.1. The sequence µ̃−1
NN monotonically in-

creases to µeff , the sequence µNN monotonically decreases
to µeff , i.e.

µ̃−1
NN ↗ µeff , µNN ↘ µeff , N →∞. (3.13)

For N = 0, (3.13) provides the Voigt-Reuss fork (see [4])

〈µ−1〉−1 6 µeff 6 〈µ〉. (3.14)

The PWE method in principle allows us to calculate
µeff with any desired accuracy, but in fact the PWE
sequences µNN and µ̃−1

NN converge slowly.
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3.2 MM method

For any function r(x1, x2) ∈ L2([0, 1]2) let us denote
its Fourier coefficients in x2 as r̂n(x1), i.e.

r(x1, x2) =
∑
n∈Z

r̂n(x1)e2πinx2 . (3.15)

Introduce the matrices

r̂N ≡ r̂N (x1) = (r̂n−m(x1))Nn,m=−N ,

∂∂∂N = 2π diag(n)N−N , (3.16)

where r is a function from L2([0, 1]2). Define (2N+1)×
(2N + 1) matrix

QN =

(
0 µ̂µµ

−1
N

∂∂∂Nµ̂µµN∂∂∂N 0

)
, (3.17)

where µ̂µµN is given by (3.16) applied to the function µ.
Introduce the multiplicative integral [6] (see Appendix)

MN =

∫̂ 1

0

(I + QNdx1), (3.18)

where I is (4N + 2)× (4N + 2) identity matrix. Denote

µN = e′ · (MN − I)−1e,

e =

(
e(N)

0

)
, e′ =

(
0

e(N)

)
, e(N) = (δ0n)N−N . (3.19)

Applying (3.17)-(3.19) to the function µ̃ ≡ µ−1 yields
the numbers µ̃N . Now we formulate the main result

Theorem 3.2. i) The sequence µ̃−1
N monotonically in-

creases to µeff , the sequence µN monotonically decreases
to µeff , i.e.

µ̃−1
N ↗ µeff , µN ↘ µeff , N →∞. (3.20)

ii) Moreover,

µ̃−1
NN 6 µ̃−1

N 6 µeff 6 µN 6 µNN , ∀N, (3.21)

i.e. the bounds (3.20) yield a better approximation of
µeff than (3.13).

For N = 0 (3.20) gives us the known estimate (see [4])

〈〈µ−1〉−1
2 〉1 6 µeff 6 〈〈µ〉−1

2 〉
−1
1 . (3.22)

Note that (3.19) admits a simpler form if µ is even
function. Denote the multiplicative integral over half of
the period as

MN, 12
=

∫̂ 1
2

0

(I + QNdx1) (3.23)

and let mN be the upper right (2N+1)×(2N+1) block
of MN, 12

. Applying (3.17) and (3.23) to the function

µ̃ ≡ µ−1 defines m̃N .

Theorem 3.3. Suppose that µ(−x1, x2) = µ(x1, x2) for
all x1, x2. Then µN , µ̃N which appear in (3.20) can also
be defined by

2µN = e(N) ·m−1
N e(N), 2µ̃N = e(N) · m̃−1

N e(N), (3.24)

where e(N) are given by (3.19).

4 Examples

We present several examples of the PWE and MM
bounds of effective speed evaluated for different N as
functions of filling fraction in two- and three-phase lat-
tices with high-contrast components. In the diagrams,
the blue/dark blue curves are PWE upper and lower

bounds
√
µNN/〈ρ〉 and

√
µ̃−1
NN/〈ρ〉, respectively, and

the red/brown curves are MM upper and lower bounds√
µN/〈ρ〉 and

√
µ̃−1
N /〈ρ〉, respectively.

It is observed that MM bounds provide a significantly
sharper estimation of the exact effective speed. The fork
of PWE bounds is relatively broader. However, for the
two-phase lattices one of the PWE bounds is close to
the exact effective speed, see Figs 1.b and 2.b. This is
no longer so for three-phase lattices, see Figs 3 and 5.
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Figure 1: PWE and MM bounds for Steel/Epoxy
lattice of nested squares: a) N = 0, b) N = 4.
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Figure 2: PWE and MM bounds for Epoxy/Steel
lattices of nested squares: a) N = 0, b) N = 4.
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Figure 3: PWE and MM bounds for
Steel/Epoxy/Silicium lattices of nested squares: a)

N = 0, b) N = 3.
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Figure 4: PWE and MM bounds for
Steel/Epoxy/Silicium lattices of nested squares: a)

N = 7, b) N = 0..7.
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Figure 5: PWE and MM bounds for Steel/Epoxy
lattice of nested circles: a) N = 0, b) N = 7.

5 Conclusions

Let us recap the strong and weak points of MM and
PWE methods:

1) MM is more accurate than PWE (see (3.21) and
the figures).

2) Implementation of PWE is more straightforward
than MM (see (3.10)-(3.12) and (3.17)-(3.18)).

3) MM requires less computation time per a step
than PWE, since:

MM needs to calculate an exponent of (4N + 2)×
(4N+2) matrix and to solve a system of (4N+2) linear
equations,

PWE needs to solve a system of (2N + 1)2 linear
equations.
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6 Appendix

6.1 Example of a closed-form µµµeff

Suppose that µ = µ1(x1)µ2(x2). Then µµµeff admits a
closed-form solution

µµµeff =

(
〈µ2〉2〈µ−1

1 〉
−1
1 0

0 〈µ1〉1〈µ−1
2 〉
−1
2

)
, (6.25)

where 〈·〉i =
∫ 1

0
·dxi. In particular if µ depends on x1

only, then 〈ρ〉c2 = 〈µ−1〉−1κ1
2 + 〈µ〉κ2

2.

6.2 Options for calculating the multiplica-
tive integral

1. Consider the interval [0, 1] = ∪k1∆n, ∆n = [xn−1, xn),
0 = x0 < x1 < ... < xk = 1 and assume that the matrix-
function Q(x1) does not depend on x1 within ∆n. Then

M = exp(|∆k|Q(xk−1))... exp(|∆1|Q(x0)). (6.26)

A similar formula holds for MN, 12
(3.23) with the inter-

val [0, 1
2 ] instead of [0, 1].

2. Multiplicative integral (3.18) (or (3.23), with the
interval [0, 1

2 ]) can be calculated through Peano series

M = I+

∫ 1

0

Q(y1)dy1 +

∫ 1

0

∫ y1

0

Q(y1)Q(y2)dy1dy2 + ...,

(6.27)
which converges at the same rate as series for exponent
of Q.

3. The definition of the multiplicative integral

M = lim
k→∞

k∏
j=1

(I + (1/k)Q(j/k)) (6.28)

can also be applied for numerical calculation of its value.
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