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Large scale molecular dynamics simulations have been performed to clarify the nonlinear and non-equilibrium
processes of high-frequency sound waves in a gas. Since the number density of molecules in a gas is considerably
small compared with those in liquids, the evaluation of macroscopic quantities requires a number of samples.
Furthermore, since the wavelengths of sound is very large compared with molecular scales even for high-
frequency (gigahertz) sound, we put more than 0.3 million molecules in a simulation box with the length of
several micrometers in the direction of wave propagation. The one-dimensional sound wave is generated by
a harmonic oscillation of sound source with the Lennard-Jones intermolecular potential, which is the same as
that of gas molecules. As a result, we find that the large amplitude and high-frequency sound propagates with
strong attenuation, in some cases, exhibiting a stream-like profile accompanied with mass, momentum, and energy
transports. This leads to a completely different picture and a different dispersion relation from a classical theory of
high-frequency sound based on the linear standing wave analysis.

1 Introduction

Large-amplitude and very-high-frequency sound is a
promising candidate for the mass, momentum, and energy
transfer in nano- and micro-scale devices.  However,
nonlinear and non-equilibrium processes of high-frequency
sound in fluids (liquid and gas) have been unknown, and
they form a serious obstacle in engineering applications of
nano- and micro-scale acoustics. The development of a new
research field of nanoacoustics may be long-awaited.

If the characteristic length scale of the system concerned
(e.g., wavelength) is sufficiently large compared with the
mean free path of molecules, the nonlinear process can
be studied in the theory of nonlinear acoustics based on
continuum mechanics for not only fluids but also solids.
This is because a sufficient large number of molecular
interactions occurs in the characteristic length scale larger
than the mean free path, and this establishes the local
equilibrium state required in continuum mechanics. On the
other hand, the wavelengths of very-high-frequency sound
(~ 1 GHz) in gases are comparable with the mean free path
of gas molecules, and hence continuum mechanics cannot be
applied to resolve the nonlinear phenomena. In the present
paper, we take up the fundamental problem of propagation
of plane waves to tackle the abovementioned difficulty with
molecular dynamics simulations.
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Figure 1: Schematic of model.

2 Problem and model

We consider the sound waves radiated into a gas by
a sound source (plate), as shown in Figure 1. The gas is
composed of monatomic molecules and its intermolecular
potential U is assumed as Lennard-Jones 12-6 type potential

o=l(7) -]

where r is the intermolecular distance and (e,0) are the
Lennard-Jones parameters. The dynamics of each molecule
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is determined by solving Newton’s equation of motion with
the intermolecular force by the Lennard-Jones potential.

On the sound source, we assume that the Lennard-Jones
potential with the same (€,07) as those of gas molecules
exists, and the location of the potential X(#) oscillates in the
x-direction as

X =a(coswt — 1), 2)

where 7 is the time, a is the amplitude and w is the angular
frequency of oscillation of the sound source. The amplitude
of oscillation speed is then given by aw, which corresponds
to the maximum gas velocity. In classical linear acoustics,
this boundary condition yields a progressive plane sound
wave,

3)

v = —awsin(wt — kx), p = po(l +yv/cop),

where v is the x-component of gas velocity, p is the gas
pressure, ¢ is the speed of sound, k (= w/cp) is the
wavenumber, and 7 is the ratio of specific heats (y = 5/3 for
monatomic molecules).

3 Molecular dynamics simulation
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Figure 2: Simulation box and sound source.

Newton’s equations of motion are numerically solved
with the leap-frog scheme for the molecules in the
rectangular simulation box (see Figure 2). The periodic
boundary condition is assumed and the length of the box is
sufficiently large so that the wave front may not affect the
other side of the gas. The time step of numerical integration
of Newton’s equation of motion is 0.0005 o Vm/e (m is
the mass of a molecule), which corresponds to 1 fs for the
case of argon. Thanks to the periodic boundary condition,
the total number of molecules (N=327680) are conserved,
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although total Hamiltonian and total momentum are not
conserved because the sound source does the work.

4 Numerical results

In Figures 3 and 4, we present typical profiles of
gas pressure and gas velocity, which corresponds to the
progressive sound wave with frequency 1 GHz for the case
of argon. The simulations are repeated 5 times and their
sample averages are shown in Figures 3 and 4. The very
important feature is that the wave front behaves not a wave-
like but a stream-like, which means the direct transports of
mass, momentum, and energy. The wave font moves with a
speed larger than the sound speed of ideal gas +yRT, where
R = kg/m is the gas constant (kp is the Boltzmann constant)
and T is the gas temperature. The results shown in Figures 3
and 4 are the case of large amplitude oscillation of sound
source, aw 0.8 \yRT. We therefore conclude that the
nonlinear and non-equilibrium effects cause a completely
different picture and a different dispersion relation from a
classical theory of high-frequency sound based on the linear
standing wave analysis [1,2].
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Figure 3: Profile of gas pressure in a large-amplitude
progressive sound wave with frequency 1 GHz.
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Figure 4: Profile of gas velocity in a large-amplitude
progressive sound wave with frequency 1 GHz.

A similar stream-like profile has been reported in the case
of propagation of nonlinear plane waves [3,4], where the
wave motions are analyzed on the basis of the system of
Euler equations. In this case, as a result of streaming, we
have found the density reduction and temperature elevation
near the sound source. The result of the present molecular
simulation also shows the temperature elevation in the gas
(Figure 5).
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Figure 5: Temperature elevation in the gas.

5 Conclusions

By the molecular dynamics simulations, we have
demonstrated that the nonlinear and non-equilibrium process
of high-frequency sound exhibits quite different features
from those known in the linear theory. Further quantitative
study focusing on nonlinear and non-equilibrium effects is
underway.
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