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In this talk, a control strategy is presented and numerically tested. This strategy aims to achieve the potential
performances of fully active systems with a reduced energy supply. These energy needs are expected to be
comparable to the power demand of semi-active systems, while system performance is intended to be comparable
to that of fully active configuration. The underlying strategy is called ” global semi-active control”. This control
approach results from an energy investigation based on the management of the optimal control process. Energy
management encompasses storage and convenient restitution. The proposed strategy monitors a given active law
without any external energy supply by considering purely dissipative and energy-demanding phases. Such a control
law is offered here along with an analysis of its properties. Moreover, a numerical experiment of a cantilever beam
subjected to external perturbations is proposed to validate findings.

1 Introduction

Traditionally, there were two categories of vibration
control based on the power flow in dynamic subsystems
namely passive and active. Active strategies have good
performances but necessitate an external power supply
to apply control in opposite of the passive ones. A third
intermediate strategy called regenerative control, has been
introduced since the early nineties [1]. A regenerative
system is a system that is not passive, yet, on average, more
energy flows into it than out of it. It is a promising system
since it offers the possibility of being self-sustainable which
would reduce the dependence on an external energy source
as for active systems.
Researches in regenerative systems is still an intensively
addressed subject. Gupta and al. [2] presented two different
regenerative electromagnetic shock absorbers (linear and
rotatory) that use the dissipated energy resulting from the
roughness of the roads to enhance the damping. Recent
works introduced a regenerative control approach called
”global semi-active control” [3]. Based on the reuse of
the energy coming from the system vibrations, the energy
management is realized through a switching between two
control schemes that are the optimal active and the semi-
active ones. It seems to effectively enhance the vibrations
control performances. They offered the required algorithms
to calculate the energy management term which will decide
the phase switching. Numerical results for discrete systems
with a very limited number of degrees of freedom like a
quarter vehicle suspension or a deck system were given.
They demonstrated that vibration attenuation capacities of
the proposed strategy approach those of the pure active one
and exceed those of the semi-active one. The stored energy
seems to increase which lets hope to significant reduction in
the energy consumption for real systems.
In this paper, the vibration control is specifically applied to
continuous flexible structures. Indeed, emerging from their
potential modes interferences, the control solution might
be unstable. It is here necessary to design a multi-mode
controller that can effectively suppress vibrations at and
near specific natural frequencies of interest, but does not
introduce unwanted vibrations at other natural frequencies
(i.e., spillover) [4]. An other specific issue to be addressed is
a consequence of these system’s high order. The higher the
order is, the larger is the amount of real time calculations is.
This drawback can limit the controller performances or even
prevent it from working properly.

2 Modal space representation

Flexible structures are inherently distributed parameter
structures with infinite degrees of freedom which request
a high computational effort if using the full system model.
That is why, modal reduction methods are preferred. Yet,
a feedback controller based on a finite reduced modal
model may destabilize the residual modes. This part of
unmodeled dynamics may lead to spillover problems on real
applications [5] [6]. Since an excited structure has preferable
modes of vibration which depend on the spectral content of
the excitation, the lower order modes are assumed to be the
most significant to the system global response. This way,
the full order model can be reduced to those modes with a
faithful restitution of the dynamic behavior.
In the following example, a cantilever beam subjected to
external forces is considered for vibration control study. The
full model equations of motion are derived according to the
following Equation with x(t) being the generalized nodal
displacement vector.

M.ẍ(t) +C.ẋ(t) + K.x(t) = Lu(t) (1)

where: M, C and K are the structural mass, damping and
stiffness matrices of the beam respectively, ẋ(t) and ẍ(t) are
the velocity and acceleration vectors respectively, L is the
location matrix of the control force u(t). The eigenvalue
problem is then solved by using the modal transformation
matrix Ψ and the modal reduced displacement vector q =
[q1 q2 . . . qi]t, (i = 1 . . . n) such that x = Ψ.q. The equations
of motion relatives to the the reduced n eigenmodes, are now
uncoupled and can be written as:

q̈ + diag(2ξiwi)q̇ + diag(w2
i )q = f (t) (2)

where wi and ξi are the natural eigenfrequency and the
damping ratio of the ith mode respectively, and diag(2ξiwi) =
(ΨT MΨ)−1.ΨT CΨ, diag(w2

i ) = (ΨT MΨ)−1.ΨT KΨ, and
f (t) = (ΨT MΨ)−1.ΨT Lu(t) = L+u(t). The modal control
force f (t) = [ f1 f2 . . . fi]t is related to the physical
control vector u(t). Consequently, each control force
fi corresponding to mode i depends on all the modal
coordinates which leads to the problem of recoupling our
decoupled equations. Methods avoiding this recoupling
issue are presented in section 3 . The state space approach
is the basis of the current control theories and is strongly
recommended in the design and analysis of control systems
with a great amount of inputs and outputs [7]. Let X(t) be
the state vector such that X(t) = [q(t) q̇(t)]t, Equation 1 can
be written in the form of a linear, first-order state space
differential equation:

Ẋ(t) = AX(t) + B f (t) (3)

with:
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A =

[
0 I

−diag(w2
i ) −diag(2ξiwi),

]
, B =

[
0
I

]
,

where A is the modal state matrix, B is the location matrix of
the modal control forces, and I is the n-rank identity matrix.

3 Independent Modal Space Control
(IMSC)

Independent modal space control method is used to derive
the global control force f (t), since it has the advantage of
restating the problem as a set of independent modal
equations which will permit decoupling equations and thus
simplifying the controller design. For that, the global control
force f (t) will be composed of Nc chosen modal feedback
forces such that ( f (t) = [ f1(t) f2(t) . . . fi(t)]t, i = 1 . . .Nc)
and the modal feedback control force fi(t) depends on the
corresponding modal coordinates qi(t) and q̇i(t) through the
following equation:

fi(t) = −g1iqi − g2iq̇i (4)

Thus, the global modal control force is written as:

f (t) = [diag(g1) diag(g2)]X(t)

= g X(t) (5)

The global gain matrix g is calculated through an optimal
scheme [8] consisting on the minimization of a quadratic
performance index J:

J =
∫ ∞

0
(XT QX + f T R f ) dt (6)

where Q is the positive definite or semi-positive definite
weightening matrix and R is the positive factor that weights
the importance of minimizing the vibration with respect
to the control forces. In stead of minimizing the global
performance index J, we chose to limit the study to Nc modal
cost functions Ji such that J = [J1 J2 . . . Ji]t, i = 1 . . .Nc

[9]. These latter modal cost functions depend on the modal
control force fi (to minimize the control input effort), the
mode states qi (through minimizing the potential energy of
the structure w2

i q2
i ) and q̇i (through minimizing the kinetic

energy q̇i
2 ) and can finally be written as:

Ji =

∫ ∞

0
[(w2

i q2
i + q̇i

2) + ri f 2
i ] dt, i = 1 . . .Nc (7)

The closed-form solution g1 and g2 of the gain matrix which
permit minimizing the performance index Ji can be obtained
by the formulation given by [?] such that:

g1i = −w2
i + wi

√
w2

i +
1
R
, (8)

g2i =

√
−2w2

i +
1
R
+ 2wi

√
w2

i +
1
R

By substituting the expression of Ji in equation 6,
the expression of matrix Q and R can be deduced to
Q = [diag(w2

i ) eye(Nc)] and R = [diag(ri)] respectively.

4 Modal global semi-active vibration
control law

The control strategy globally manages the system energy
which is composed of two types: the energy extracted from
vibrations and stored in the accumulators and the dissipated
energy used to power the actuators such these later switch
between two control types which are the optimal scheme
and the semi-active one. Actuators will operate under the
purely-active law when the available energy allows them to
or under the semi-active one if not which is possible through
extracting energy from vibrations and storing it in the
accumulators. It is clear then that storage devices are needed
in this control scheme (called accumulators) as well as an
energy management device responsible of the switching
operation between the two different control types. A major
advantage can be instantly deduced from the proposed law
which is the reduction of the energy consumption required
for the control law.

4.1 Constraints on accumulators and
actuators

In order to be able to apply the global semi-active
control, storage (accumulators) and actuation (actuators)
devices are needed. Consequently, two constraints that may
affect the control performances have to be introduced. The
first limitation is related to the stored energy amount which
itself depends on the accumulators capacities meaning that,
at each time t, the stored energy amount has to be bounded
by two extreme values Emin and Emax such that:

Emin � E(t) � Emax, t ∈ [t0, t f ] (9)

The second limitation deals with the control force that the
actuators are supposed to deliver. In fact, the control is
displayed by piezoelectric actuators (collocated piezoelectric
patches bounded on the beam) and the control force f (t) is
proportional to the feedback control voltage V(t). In this
case, V(t) is the physical control force and matrix L includes
the electro-mechanical constants of the piezoelectric patches.
The voltage limitation of the of the piezoelectric actuators
results in the limitation of the produced control force such
that:

|| f ||� fmax, fmax > 0 (10)

Moreover, for stability reasons, actuators saturation must be
avoided i.e. they must be able to function regardless of the
available stored energy level and also extract energy from the
system even if one accumulator is already full. A Boolean
function b(t) is therefore introduced to define the sequence
disconnection between actuators and accumulators, and
we have b(t) = 1 when actuators and accumulators are
connected and optimal control force is delivered and b(t) = 0
otherwise i.e. actuators extract energy and store it in the
accumulators which make them operating like conventional
semi-active actuators. The switching between these two
states is decided in function of an energy management term
Γ which will be introduced in the following section.

4.2 Algorithm of the control strategy

The minimization of the cost criterion J resulted in
the determination of the optimal control force further
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denoted fgsa(t) (section 3) , the knowledge of the initial
conditions as well as the definition of the constraints on the
accumulators and actuators (section 4.1) permits setting the
global minimization problem denoted below as (P):

Ẋ = AX + B f

Emin � E(t) � Emax, ∀t ∈ [t0, t f ]

|| f ||� fmax, fmax > 0, when b(t) = 0

X(t0) = X0, E(t0) = E0

In order to be able to apply the global semi-active control
to a multi-modal structure, the optimization problem will
be addressed for each mode apart (i.e. each mode will
be considered as a 1 d.o.f system). The needed power
amount for the piezoelectric actuators to deliver the optimal
control force denoted fgsai (t) corresponding to each mode i
(which is supposed to be supplied from the accumulators)
is electrical and can be calculated by [10] through the
following expression:

Ėi = b w CPZT

(
Vgsai

)2
2

= b
w CPZT

2α2
( fgsai )

2 (11)

where w, α and CPZT are the radial frequency of voltage,
the piezoelectric constant and capacitance respectively.
Consequently, we will have Nc modal global minimization
problems to solve through minimizing their corresponding
Hamiltonian functions Hi relative to each mode separately,
and we get:

Hi = (Xt
i QiXi + f t

i ri fi) + λ
t(AiXi + Bi fi − Ẋi)

+ Γi(Ėi − b.
w CPZT

2α2
f t
i fi) − γ1i (Ei − Emin) + γ2i (Ei − Emax)

+ (−β1i ( fi + fmax) + β2i ( fi − fmax)) (12)

with λi, γ1i , γ2i , β1i , β2i and Γi , being the set of required
Lagrange multipliers. Ai, Bi,Qi are the reduced state
matrix, actuator location matrix and weightening matrix
corresponding to mode i respectively. The minimization of
Hi with respect to the state coordinates gives the following
expression of λi:

∂Hi

∂Xi
= (Xt

i Qi + λ
t
iAi − λ̇i)

= 0

=⇒ λ̇i = −QiXi − At
iλi (13)

and the modal control force is obtained by:

∂Hi

∂ fi
= ( f t

i ri + λ
t
iBi − Γi b.

w CPZT

2α2
f t
i )

= (ri fi + Bt
iλi − Γi b

w CPZT

2α2
fi)

= 0

=⇒ fi =
−Bt

i λi

ri − Γib
w CPZT

2α2

(14)

The minimization of Hi with respect to the power amount
provides the expression of Γ̇i at instant t:

∂Hi

∂Ei
= (−γ1i + γ2i + Γ̇i)

= 0

=⇒ Γ̇i = γ1i − γ2i (15)

The minimization problem relative to each mode i can then
be written as:

Ẋi = AiXi + Bi fi
λ̇i = −QiXi − At

iλi

fi =
−Bt

iλi

ri−Γib
w CPZT

2α2

Γ̇i = γ1i − γ2i

4.2.1 Available energy

In order to calculate the value of the available energy, we
need to have a direct relationship between Γi and Ėi. So, we
substitute the expression of the control force 14 in 11 and
get:

Ėi = b
w CPZT

2α2
.

⎛⎜⎜⎜⎜⎜⎝ Bt
iλi

ri − Γib
w CPZT

2α2

⎞⎟⎟⎟⎟⎟⎠
2

(16)

An additional constraint relative to the energy management
term Γi arises from the previous Equation 16. In fact,
because Γi is related to the amount of energy stored in
the accumulators Ėi, it must rely in an eligibility interval
[Γmin Γmax] to respect the physical limitations of both
actuators and accumulators. When these last conditions
are satisfied, we can calculate the value of the energy
management term and we get:

Γi =
2α2

w CPZT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ri −
Bt

iλi√
2α2 Ėi

b w CPZT

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (17)

However, it is necessary to study the state of the system
at instant tn where a control switching is required i.e. the
corresponding value of Γi which is equal to its previous value
at instant tn−1 causes a saturation of the accumulator and
thus has to be readjusted to a new one denoted Γ̂i satisfying
Equation 16. Let denote Γ̃i the displayed value of Γi at the
switching instant from which we can deduce the value of the
displayed control force f̃i which itself is not satisfying the
accumulator limitations, such that:

f̃i(tn) =
−Bt

iλi(tn)

ri − Γ̃i(tn)b
w CPZT

2α2

(18)

Now, the value of the readjusted energy management term
can be calculated from Equation 17 and we have:

Γ̃i(tn) =
2α2

w CPZT
(

Bt
iλi(tn)

ri −

√
2α2 Ėi(tn)
b w CPZT

) (19)

By replacing the expression of the displayed control force 18
in 19, we get:

Γ̂i(tn) =
1√

2α2 Ėi(tn)
b w CPZT

.

(
b ri f̃i(tn)

2α2

w CPZT
+ Γ̃i(tn)

)
+ ri

2α2

w CPZT
.

(20)
The value of Ėi(tn) in Equation 20 enables us to calculate the
value of the maximum available instantaneous force further
denoted f̂i through the relationship 11 and the expression of
the readjusted value of Γi can be finally obtained by:

Γ̂i(tn) =

⎛⎜⎜⎜⎜⎜⎜⎝b ri f̃i(tn) 2α2

w CPZT
+ Γ̃i(tn)

f̂i(tn)

⎞⎟⎟⎟⎟⎟⎟⎠ + ri
2α2

w CPZT
. (21)
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The global management term Γ at instant tn, when switching
is required, is chosen to equal the modal energy management
term Γ̂i corresponding to the highest modal control force f̂i
to be applied i.e. the mode with the highest vibrations level.
With this procedure, we are sure that at each time path, we
are addressing the mode that influences the most the overall
response of the beam and thus obtaining the best vibration
attenuation performances with the lowest control effort.
From an industrial implementation consideration,
readjusting the value of Γ at each time path is not practical
and certainly not attractive. So, a suboptimal algorithm is
developed in order to avoid this heavy calculation effort
and instead, the switching will occur as soon as a saturation
in the accumulator is depicted (i.e. limits of Ei(t) are not
respected). The algorithm is detailed in Figure 1.

nonoui

optimal force

optimal control 

Figure 1: Algorithm of modal global semi-active control

5 Simulations and discussions

In this section, the capacity of the proposed modal
global semi-active control (MGSA) to efficiently attenuate
a cantilever beam vibrations is investigated and the
performances of this method are compared to the purely
active ones obtained with IMSC scheme as well as to the
semi-active (SA) scheme. The modal response of the beam
is initially reduced to the five first modes which appeared
to be the most energetic and here the most interesting
to the overall response. One of the main aspects of this
control is to use some energy harvested from the structure
itself. From this observation, one can expect this technique
to reduce the structure’s vibrations by taking some of its
energy at least while stored energy is increasing (Figure 2).
Figure 3(a) indicates the frequency response comparisons
when using the different control strategies. It is noted that
MGSA scheme is able to attenuate the vibrations of the
structure with performances approaching those of the IMSC
scheme. The precise analysis of the FRF around the first
eingenfrequency (Figure 3(b)) actually confirms this remark
where MGSA control (green curve) is located between the
uncontrolled (solid curve) and the IMSC (dashed curve)
responses. This observation is even confirmed by the time
response results of the beam for a harmonic excitation
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Figure 2: Evolution of the stocked energy
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(b) Zoom of the first mode frequency response

Figure 3: Frequency response of the beam

(Figure 4. The RMS values of the beam displacement
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Figure 4: IMSC/MGSA time response comparisons for
harmonic excitations
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for the three types of control (IMSC, MGSA and SA) in
comparison with the uncontrolled response are respectively:
0.152010−7, 0.161210−7, 0.163210−7 and 0.163810−7 under
a harmonic excitation. The performances of the modal
global semi-active strategy rank it between the active and
the semi-active schemes.

6 Conclusion

The main advantage of the proposed control scheme
is its low power requirement since it re-uses the energy
of vibrations to supply the actuators. If the stored energy
is sufficient to follow the optimal scheme, this last is
applied. Otherwise, the controller switches to the semi-
active one (dissipative one). The control law was addressed
to a cantilever beam and the results showed its good
performances approaching those of the optimal law and
exceeding those of the semi-active one. Moreover, a
reduction in the energy consumption is noticed. It presents
an attractive achievement in comparison with the pure active
strategy.
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