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In this paper, we present an application of the Floquet-Bloch theorem in the context of electrodynamics for

vibroacoustic power flow optimization by mean of distributed and shunted piezoelectric patches. The main purpose

of this work is first to propose a dedicated numerical approach able to compute the multi-modal wave dispersions

curves into the whole first Brillouin zone for periodically distributed 2D shunted piezo-mechanical systems. By

using two specific indicators evaluating the evanescent part of Bloch’s waves and the induced electronic damping,

we optimize the piezoelectric shunting electrical impedance for controlling energy diffusion into the proposed

semi-active distributed set of cells. Sound radiation efficiency is also analyzed for showing the effects of such

smart metamaterial for controlling acoustical noise.

1 Introduction
Tailoring the dynamical behavior of wave-guide

structures can provide an efficient and physically elegant

means to optimize mechanical components with regards

to vibration and acoustic criteria, among others. However,

achieving this objective may lead to different outcomes

depending on the context of the optimization. In the

preliminary stages of a product’s development, one mainly

needs optimization tools capable of rapidly providing global

design direction. Such optimization will also depend on

the frequency range of interest. One usually discriminates

between the low frequency (LF) range and the medium

frequency (MF) range, especially if vibration and noise

are considered. However, it should be noted that LF

optimization of vibration is more common in the literature

than MF optimization. For example, piezoelectric materials

and other adaptive and smart systems are employed to

improve the vibroacoustic quality of structural components,

especially in the LF range. Recently, much effort has

been spent on developing new multi-functional structures

integrating electro-mechanical systems in order to optimize

their vibroacoustic behavior over a larger frequency band

of interest[1, 2, 3, 4, 5]. However, there is still a lack of

studies in the literature for MF optimization of structural

vibration. To that end, the focus of this study is to provide

a suitable numerical tool for computing wave dispersion in

2D periodic systems incorporating controlling electronics

devices. The final aim is to allow their optimization in order

to optimize vibroacoustic diffusion in 2D wave guides and

analyze its effect on acoustic radiation [6, 7].

After recalling the Floquet-Bloch theorems, we introduce a

new numerical formulation for computing the multi-modal

damped wave numbers dispersion in the whole first Brillouin

domain of a periodical smart structure made of periodically

distributed shunted piezoelectric patches. Based on this

wave modeling, optimization of the electrical impedance

of the shunted circuit is performed in order to decrease the

group velocity of flexural waves or to increase damping

induced by the electric circuit. The obtained optimal

impedances are also tested in controlling the MF response of

a semi-distributed infinite system.

2 Piezo-elasto-dynamical application
of the Floquet-Bloch theorem

In this section the application of the celebrated Floquet-

Bloch theorem is presented for piezo-elastodynamic

problems. Based on the well known results obtained by

Floquet [8] in one-dimensional and later rediscovered by

Bloch [9] in multidimensional problems, we propose an

original application to bi-dimensional piezo-elastodynamical

problem leading to very general numerical implementation

for computing waves dispersion for periodically smart

distributed mechanical systems incorporating electronic

components and damping effects [10].

2.1 The Bloch Theorem
The Bloch theorem gives the form of homogeneous

states of Schrödinger equation with periodic potential.

This theorem can be considered as a multidimensionnal

application of the Floquet theorem. The periodic medium

properties satisfy a periodic condition as M(x+R.m) = M(x),

m ∈ Z3 where R = [r1, r2, r3] ∈ R3×3 is a matrix grouping

the three lattice’s basis vectors (in 3D). We can also define

the primitive cell as a convex polyhedron of R3 called Ωx.

The reciprocal unit cell is denoted by Ωk limited by the

reciprocal lattice vector defined by the three vectors g j so

that: ri.g j = 2πδi j (δi, j being the Kronecker index). We note

G = [g1, g2, g3] the reciprocal lattice matrix in the later. If

Ωx is the irreductible primitive cell, Ωk corresponds to the

first Brillouin zone of the lattice.

The Bloch Theorem stipulates that any functions u(x) ∈
L2(R3,Cn) can be expressed as

u(x) =

∫
Ωk

eikxũ(x, k)dk (1)

where the Bloch amplitude ũ(x, k) isΩx-periodic and has the

representations

ũ(x, k) =
∑
n∈Z3

û(k +Gn)eiGn.x,

u(x) =
|Ωx|

(2π)3

∑
n∈Z3

u(x + Rn)eik(x+Rn) (2)

where û(k) stands for the Fourier transform of u(x). One can

also demonstrate that the mean value of the Bloch amplitude

is the Fourier amplitude of u(x) for the corresponding

wave vector: 〈ũ(., k)〉Ωx
= û(k). Using the Bloch theorem

to represent the solutions of periodical partial derivative

equations implies that all derivatives are shifted by k in the

sense given by the used spatial operator.

Based on that theorem one can define the expansion

functions vm(x, k), called the Bloch eigen modes, such that

they can be used to represent the Bloch amplitudes of any

solution of the corresponding partial derivative equation as

ũ(x, k) =
∑

m

um(k)vm(x, k) (3)

and at the same time diagonalize the partial derivative

equations. One notes that the expansion coefficients um(k)

depend on the applied disturbance and also on the induced

wave vector (see [11] for details).
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2.2 Application to Piezo-Elastodynamic
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Figure 1: Generic 3D piezocomposite periodic cell

Let us consider a piezo-elastodynamic problem made

of infinite periodic distribution of unitary cell described

in figure 1. The harmonic homogeneous dynamical

equilibrium of system is driven by the following partial

derivative equation:

{
ρẅ(x) − ∇σ(x) = 0 ∀x ∈ Ωx

−∇D(x) = 0 ∀x ∈ Ωx
(4)

where w(x) ∈ R3(Ωx) is the displacement vector, σ
represents the Cauchy stress tensor, ε = ∇symw =
1
2
(∇wT (x) + w(x)∇T ) the Green strain tensor, D(x) the

electric displacement. The linear constitutive material

behavior relationships can be written as

σ = CE(x)ε − eT (x)E (5)

D = e(x)ε + εS (x)E (6)

where E = −∇V the electric field vector (V the voltage),

CE the elasticity tensor at constant electrical field, eT

the piezoelectric coupling tensor and εS the dielectric

permittivity at constant strain. We add to this set of

equilibrium equations an output expression

qo = −
∫

S t

D.ndS (7)

allowing the introduction of the charge measurement on the

piezoelectric’s top electrode and hence the dual counterpart

of the imposed electrical Dirichlet boundary condition for

applying the shunt impedance operator.

The equations above are consistent for each kind of material

to the extent that null piezoelectric and permittivity tensors

can be used when passive materials are considered. All of

these tensors also depend on the spatial location vector x.

The piezo-elastodynamic equilibrium can also be written as:

∀x ∈ Ωx

ρω2w(x) + ∇C∇sym(w(x)) + ∇eT (x)∇V(x) = 0 (8)

−∇e(x)∇sym(w(x)) + ∇εS (x)∇V(x) = 0 (9)

As the problem is 2D infinitely periodic, only electrostatic

boundary conditions have to be considered on each cell:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V = 0 ∀x ∈ S b

V = Vo ∀x ∈ S t

D.n = 0 ∀x ∈ S l

(10)

where S b is the grounded bottom electrode of the

piezoelectric layer, S t is the top electrode connected to

the external shunt and sl the lateral electrode less boundary.

The top electrode applied feedback voltage Vo depends on

the shunt characteristic and on the collected charges qo (7)

and can be expressed in the Fourier space by:

Vo(iω) = −Z(iω)qo(iω) (11)

By considering a primitive cell of the periodic

problem Ωx and by using the Bloch theorem, we can

compute the associated Bloch eigenmodes (3) and the

dispersion functions by searching the eigen solutions of the

homogeneous problem (8) and (9) as:

u(x) =

[
w(x)

V(x)

]
= un,k(x)eik.x (12)

with un,k(x) =

[
wn,k(x)

Vn,k(x)

]
, Ωx periodic functions. By

introducing expression (12) in the piezo-elastodynamic

equations (8), (9), one can demonstrate that wn,k(x), Vn,k(x)

and ωn(k) are solutions of the generalized eigenvalues

problem:

0 = ρω2
n(k)wn,k(x) + ∇C∇sym(wn,k(x))

+ ik
{
(C∇sym(wn,k(x))).Φ

+ ∇(CΞn,k(x))
} − k2(CΞn,k(x)).Φ

+ ∇eT∇Vn,k(x) + ik
{
(∇eT Vn,k(x)).Φ

+ (eT∇Vn,k(x)).Φ
}

− k2Vn,k(x)(eTΦ).Φ ∀x ∈ Ωx (13)

0 = −∇e∇sym(wn,k(x)) − ik
{∇(eΞn,k(x))

+(e∇sym(wn,k(x))).Φ
}

+ k2(eΞn,k(x)).Φ

+ ∇εS∇Vn,k(x) + ik
{
(∇εS Vn,k(x)).Φ

+ (εS∇Vn,k)(x).Φ
}

− k2(εSΦVn,k(x)).Φ ∀x ∈ Ωx (14)

with the associated boundary conditions:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wn,k(x − R.m) = wn,k(x) ∀x ∈ S r m ∈ Z2

Vn,k(x) = 0 ∀x ∈ S b

Vn,k(x)V = −Z(iω)qo
n,k ∀x ∈ S t

D.n = 0 ∀x ∈ S l

(15)

where k = k

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cos(φ)
sin(φ)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = kΦ where φ represents the

direction angle into the reciprocal 2D lattice domain and

Ξn,k(x) = 1
2
(wn,k(x).ΦT + Φ.wT

n,k(x)) the symmetric dyadic

tensor or the dyadic product of the displacement wn,k(x)

and direction vector Φ. S r are the interface of the cells

continuum, and R the matrix grouping the two lattice’s basis

vectors (in 2D in the considered problem). In the electrical

boundary conditions, qo
n,k is given by:

qo
n,k =

∫
S t

[−e(∇sym(wn,k(x)) + ik∇eΞn,k(x))

+ εS (∇Vn,k(x) + ikVn,k(x)Φ].ndS (16)
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where n is the outpointing unitary normal vector.

The proposed formulation is also based on the computation

of the Floquet vectors (13), (14), instead of computing

the Floquet propagators commonly used for elastodynamic

applications. Our approach allows to obtain the full 2D

waves dispersions functions and to clearly introduce

damping and electrical impedance into the piezo-

elastodynamic operator. The adopted methodology

allows the computation of the complete complex map of the

dispersion curves including evanescent waves and allowing

the introduction of damping and shunt operator if any.

2.3 Numerical Computation of the Bloch’s
waves

The numerical implementation is obtained by using a

standard finite elements method to discretized the weak

formulation of equations (13), (14). The assembled matrix

equation is also given by:

0 = (K(Z(iωn(λ, φ)) + λL(φ,Z(iωn(λ, φ)))

− λ2H(φ,Z(iωn(λ, φ))) − ω2
n(λ, φ)M)un,k(φ), (17)

where λ = ik, M and K(Z(iωn(λ, φ))) are respectively the

standard symmetric semi-definite mass and stiffness matrices

(the mass matrix is semi definite because elastostatic

equation are condensed into the equation), L(φ,Z(iωn(λ, φ)))
is a skew-symmetric matrix and H(φ,Z(iωn(λ, φ))) is a

symmetric semi-definite positive matrix.

When k and φ are fixed and Z does not depend on ω the

system (17) is a linear eigen value problem allowing us to

compute the dispersion functions ω2
n(k, φ) and the associated

Bloch eigenvector un,k(φ).

If a highly damped system (K, L,H are complex

frequency dependent) and a frequency dependent electrical

shunt impedance are considered, the obtained eigenvalue

problem is not quadratic and a complex specific numerical

methodology has to be implemented. Furthermore,

evanescent part of propagating waves appear as the

imaginary part of eigenfrequencies. It then becomes very

difficult to distinguish the propagative and evanescent waves

as all solution appear complex. Another much more suitable

possibility for computing dispersion in damped systems,

dedicated for time/space deconvolution and for computation

of diffusion properties as defined by [1, 12], is to consider

the following generalized eigen value problem:

0 = (K(Z(ω) − ω2M + λn(ω, φ)L(φ,Z(ω))

− λ2
n(ω, φ)H(φ,Z(ω)))un(ω, φ). (18)

In this problem, the pulsation ω is a real parameter

corresponding to the harmonic frequency. Wave’s numbers

and Floquet vectors are then computed. An inverse Fourier

transformation in the k-space domain can lead us to evaluate

the physical wave’s displacements and energy diffusion

operator when the periodic distribution is connected to

another system as in [1]. As L is skew-symmetric, the

obtained eigen values are quadruple (λ, λ̄,−λ,−λ̄) collapsing

into real or imaginary pairs (or a single zero) when all

matrices are real (i.e. for an undamped system). In this

case a real pair of eigen values correspond to evanescent

modes oriented in two opposite directions on the k-space

and imaginary values to two traveling waves propagating in

opposite direction.

As previously mentioned, the real part of k = kΦ
vector is restricted to stand inside the first Brillouin

zone. In the quadratic eigen value problem (18) nothing

restricts computation to only find eigen values satisfying

this condition. For direction vector Φ orthogonal to the

lattice facelets, the periodical conditions expressed for

one dimensional wave guide are still valid: if λ j(ω,Φp)

is an eigen value associated to w j(ω,Φp) then ∀m ∈ Z3,

λ + i.ΦT
p (G.m) is also an eigen value associated to

w j(ω,Φp)e−i.ΦT
p (G.m)x. Thus, for undamped systems, all

obtained eigenvalues are periodically distributed in the

k-space along its principal directions.

2.4 Computation of the evanescence and
damped power flow criteria

One aim of this paper is to provide a numerical

methodology for optimizing the piezoelectric shunt

impedance Z(ω) for controlling energy flow into the

periodically distributed piezo-composite structure. For

doing this, we need to define suitable criteria.

The first used criterion is based on the computation

of the waves group velocities. Indeed, they indicate how

energy is transported into the considered system and allow

to distinguish the ’propagative’ and ’evanescent’ waves. If

one Bloch eigen solution (i.e un(ω, φ), kn(ω)) is considered,

the associated group velocity vector [13] is given by:

Cgn(ω, φ) = ∇kω =
〈〈S〉〉
〈〈etot〉〉 =

〈I〉
〈Etot〉 (19)

where 〈〈:〉〉 is the spatial and time average respectivelly

on one cell and one period, S is the density of energy

flux defined in [13], I the mean intensity and etot, Etot

the total piezomechanical energy and its time average

on a period (see [13] for details). In this problem, we

only consider mechanical energy transportation as the

electrostatic coupling is decentralized and can be condensed

as a mechanical interface as proved in [14] and generally

computed in [15]. So we also compute the intensity vector I
by:

〈In〉 (ω, φ) = − ω
2Vol

Re(

∫
Ωx

C(εn(x) + ikΞn(x)).(w∗n(x)))dΩ

(20)

where .∗ is the complex conjugate and Vol the domain

volume. As the spatio-temporal average of the system

Lagragian is null (see [13]), the total energy average is

approximated by only computing the kinetic energy average:

〈Etot〉 (ω, φ) = 1

2Vol
Re(

∫
Ωx

ρω2wn(x).w∗n(xi)dΩ) (21)

The group velocity vectors Cgn(ω, φ) is computed for

all wave numbers at each frequency. In order to focus

our analysis on only flexural modes (S and S H ones)

we introduce an indicator allowing to select them by

computing the ratio of kinetic energy average on out of plane

displacement as:

Ind(n, ω, φ) =
1

2Vol
(
∫
Ωx
ρω2wzn(x)wz∗n(x)dΩ)

〈Etot〉 (22)
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Piezoelectric Material

Symbol Value Property

sE
11 = sE

22 = sE
33 11.6e−12 Pa−1 compliance matrix

sE
12 = sE

13 = sE
23 −3.33e−12 Pa−1 compliance matrix

sE
44 = sE

55
= sE

66
45.0e−11 Pa−1 compliance matrix

η 0.1 % Hysteretic Damping ratio

d31 = d32 −6e−11 C/N piezoelectric matrix

d33 15.2e−11 C/N piezoelectric matrix

d24 = d15 730e−12 C/N piezoelectric matrix

ρ 7600kg/m3 Density

εT
11 = ε

T
22 504.1 εo C/V/m Dielectric Permittivity

εT
33 270 εo C/V/m Dielectric Permittivity

Table 1: Piezoelectric patch characteristics

with wzn(x, ω, φ) being the (Oz) component of vector

wn(x, ω, φ). Optimization of the shunt impedance Z(iω) is

based on the minimization of the maximum group velocity

collinear to the wave number vector (19) for waves having a

ratio of transported flexural kinetic energy (22) greater than

0.8. The used criterion can also be written as:

Crit1(Z(iω), φ) = maxn/Ind(n,ω,φ)>0.8(Cgn(ω, φ).Φ) (23)

The second used criterion is based on the maximization

of the damped electric power directly express as the active

electrical power Pelec(n, ω, φ) = 1
2
real(iωZ(iω)qo

n,kqo∗
n,k).

If one wants to increase damping effect inside the smart

metamaterial, this term need to be sufficiently large. In the

second case, the used criteria is also

Crit2(Z(iω), φ) = maxn/Ind(n,ω,φ)>0.8
1

Pelec(n, ω, φ)
(24)

3 Optimization of the Flexural energy
flow inside the shunted periodic
piezo-composite

The considered piezo-composite cell is presented in

figure 1. The supporting plate material is standard aluminum

with 0.1 % of hysteretic damping ratio and the piezoelectric

material characteristics are given in table 1.

The used numerical optimizations of the criteria are based

on a multidimensional unconstrained nonlinear minimization

(Nelder-Mead).

3.1 Optimization of the waves goupes
velocities by using Crit1

In a first test, we optimize the waves groups velocities by

using Crit1 given in equation (23).

It can be immediately observed that the optimization

of the shunt impedance leads to a large decrease of the

group velocity of the A0 mode while the A1 wave, which

becomes propagative at 8.8 kHz, is not controlled by the

optimal configuration (see figure 2). The bending waves

also propagate energy with a very slow velocity and can

be considered as evanescent. Flexural energy is, also, only

transported by the A1 mode after the cutting frequency.

The real and imaginary parts of the optimal impedance

are plotted in figure 3 for all angles φ. The optimal

impedance values almost correspond to a constant
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Figure 3: Optimal electric impedance, represented as

equivalent resistance and capacitance, obtained along 6

direction forming an angle with (Ox) axis of nπ
20

with n being

all integers from 0 to 5.

negative capacitance in all directions. The corresponding

average value is −233.66 pC.V−1. Equivalent resistances

corresponding to the active part of the shunt impedance

(figure 3) are negative which indicates that the optimization

leads to provide energy to the system for controlling

mechanical damping effects introduced by hysteretic terms

in the model. The optimized configuration also tends to

converge towards a fully conservative system. The obtained

mean value of the resistance is −1.5319 Ω. This is confirmed

in figure 4 where the electrical dissipated energy appears

negative when the optimal shunt is connected to the patch.

This observation is one of the main issue of this work.

In order to check this point, an optimization run has

been performed on a highly damped system, using an

hysteretic coefficient of 5 %. The optimized configurations

leads to a behaviour which is very similar to results

obtained with lower structural damping value. It can be

underlined that the electric circuit is fully active with

smaller negative resistive parts of average value −74.88

Ω. The observed proportionality between the optimal

average resistances (−1.5319 and −74.88 Ω) and the chosen

mechanical damping terms (0.1 % and 5 %) indicates that

the optimization leads to annihilate mechanical damping in

order to reach a total cancellation of the group velocity of

A0 mode. The final controlled system is then almost fully
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reactive.

3.2 Optimization of damped power flow inside
the electric shunts by using Crit2

In this second test, we optimize the damped power flow

inside the electric shunts by using Crit2 given in equation

(24). The group velocities of propagative waves along (Ox)

are presented in figure 6, while the real and imaginary parts

of the optimal impedance are plotted in figure 8 and the

electrically damped power in figure 7.
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The optimal impedances of the electric shunts are plotted

in figure 8 for various values of φ.
The first observation is that the optimization of the shunt

impedance for improving the absorption characteristics of

the system induces modifications of the group velocities of

the controlled waves (see figure 6), while the propagative

part of the wave numbers remain unchanged (figure 5).

This can be explained by a large improvement of the ratio

between the real and imaginary parts of the waves numbers,

which physically corresponds to the forcing of propagating

effects to increase damping effects: energy can propagate
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inside the periodically distributed set of active cells for

allowing electrical energy conversion. The figure 7 shows

that a the dissipated power is largely increased when optimal

shunt is connected to the patch.

The optimal impedance values correspond to an almost

constant negative capacitance in all directions (see figure

8). The corresponding average value is −237.43 pC.V−1.

Equivalent resistances corresponding to the active part of

the shunt impedance (figure 8) are positive, which is in

accordance with the fact that a damping effect is awaited.

4 Conclusions
This paper presents a numerical procedure able to

compute the damped wave’s dispersion functions in the

whole first Brillouin domain of multi dimensionnal piezo-

elastodynamical wave guides. The method was applied for

determining the optimal impedance allowing to minimize

the group velocities of the flexural waves. Based on this

approach, some numerical tests on a finite dimension

system incorporating a semi-distributed set of shunted

piezo-composite cells have been performed. We underline

a strong influence of the designed shunt circuits in the
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Figure 8: Optimal electric impedance, represented as

equivalent resistances and capacitances, obtained along 6

direction forming an angle with (Ox) axis of nπ
20

with n being

all integers from 0 to 5.

dynamical response of the system and the coupled noise

radiation. Even if the link between the obtained wave

properties are not clearly established, we also demonstrated

that our developed numerical procedures can be used for

optimizing the energy diffusion operator of such adaptive

mechanical interface. To do so, additional work has to be

done for optimizing the complete interface scattering and for

controlling the evanescent waves playing an important role

in the dynamical response of a finite system incorporating

such semi-distributed interface. Another part of this future

developments should deal with the complete vibroacoustic

optimization incorporating a fully fluid-structure coupling

effect.

The proposed methodology can also be used for studying

particular dissipation phenomenon such as those induced

by complex shunted piezoelectric patches as proposed

by [16], or even foams or complex polymers behaviors.

The proposed method furnishes an efficient tool for future

optimization of distributed smart cells as proposed in the

case of 1D wave guide by [1].
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[9] F. Bloch, “Über die Quantenmechanik der Electron in

Kristallgittern,” Zeitschrift für Physik, vol. 52, pp. 550–

600, 1928.

[10] M. Collet, M. Ouisse, M. Ichchou, and M. Ruzzene,

“Numerical tools for semi-active optimization of 2d

waves dispersion into mechanical system,” in ASME-
SMASIS, (Philadelphia), ASME, Sept 28 Oct 1 2010.

[11] A. Bensoussan, J. Lions, and G. Pananicolaou,

Asymptotic Analysis for Periodic Structures. North

Holland, 1978.

[12] J. Mencik and M. Ichchou, “Multi-mode propagation

and diffusion in structures through finite elements,”

European Journal of Mechanics A-Solids, vol. 24,

no. 5, pp. 877–898, 2005.
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