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The proposed study focuses on the modeling of acoustic wave propagation in infinite guides lined with bulk-
reacting sound absorbing material which allows acoustic propagation through the lining. The finite element method
is used, it is then necessary to limit the numerical domain by an artificial boundary on which a transparent bound-
ary condition is introduced. The method described in this work consist to write the transparent condition as a
Dirichlet to Neumann operator (DTN) based on a modal decomposition of the pressure in the guide. This study
is a generalization of recent works with absorbent materials modeled with impedances boundary condition. The
presented method can be useful for the acoustic design of silencers, air-conditioning ducts, industrial fans, and
other similar applications.

1 Introduction

The study of acoustic wave propagation in ducts remains
an important issue for aerospace (turbine aircraft) and au-
tomobiles (mufflers) engineering. For these problems, the
complexity of geometries often justify the use of the finite
element method, but there is also areas equivalent to straight
waveguides allowing the use of modal methods when they
are assumed infinite. Applications with mean flow and acous-
tic treatment have been studied in a precedent paper with a lo-
cally reacting liner modeled by an impedance condition [1].
Our work concerns here the study of an infinite guide lined
with a non locally reacting porous material without mean
mean flow. The system is modeled by the Helmholtz equa-
tion in the part of the guide containing air while the porous
material is modeled with a fluid equivalent model. A new
transparent boundary condition described by a DtN (Dirich-
let to Neumann) operator is expressed to truncate the infinite
waveguide.

2 Description of the problem

We consider a two-dimensional infinite duct of height h1

containing air at rest. The duct is lined with a bulk-reacting
sound-absorbing porous material of height h2 − h1 as shown
in Figure 1. The interface of these two medium is denoted
by ΓI . The walls Γ1 and Γ2 in contact with the fluid and the
bulk-reacting liner respectively, are assumed perfectly rigid.
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Figure 1: Geometry of the physical domain

We are interested in the radiation of a fixed source located
in the guide, the problem is posed in the Oxy plane where the
x-axis is parallel to the walls of the guide.

In order to use the finite element method, it is necessary
to truncate the infinite domain. Artificial boundaries should
be introduced in either side of the source at x = 0 (Σ− =
Σ1− ∪ Σ2−) and x = L (Σ+ = Σ1+ ∪ Σ2+) on which transparent
boundary conditions will be defined (see Figure 2). In this

paper, the transparent boundary conditions is expressed by a
Dirichlet-to-Neumann (DtN) operator.
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Figure 2: Geometry of the computational domain

3 Governing equations

3.1 Governing equation in air

The duct (Ω1) contains air considered as a perfect, com-
pressible, and inviscid fluid at rest. According to the clas-
sical linear acoustics hypothesis, the time-harmonic acoustic
wave propagation (e−iωt) is described by the homogeneous
Helmholtz equation :

Δp1 +
ω2

c2
0

p1 = 0 (1)

where c0 denotes the speed of sound in air, p1 is the sound
pressure in Ω1 and Δ is the Laplacian in cartesian coordi-
nates.

3.2 Governing equation in the porous material

The bulk-reacting liner (domain Ω2) is a porous material
whose pores contain air at rest. A porous absorbing mate-
rial is an heterogeneous media consisting of a solid phase
or skeleton and a fluid phase. The skeleton can be continu-
ous (foams, ceramics) or not (fibrous, granular). The fluid is
generally composed of air that saturates the pores. The most
general approach to study acoustic propagation in porous me-
dia is to consider specific movements of waves through the
solid skeleton and the saturating fluid. However, in some
cases, the fluid is more lightweight and compressible than
the solid skeleton. It is often the case for air-saturated porous
materials (materials in acoustic engineering) in the frequency
range of interest. This corresponds to the approximation of
rigid skeleton in which the material is considered as an “
equivalent” fluid with effective properties. In the equivalent
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fluid approximation, several models like Zwikker and Kösten
[2] model, Delany-Bazley [3] model or recently the Miki [4]
model, have been developed over the last decade. Most elab-
orated models exist, they are based on the original theory of
Biot [5] and can be used in the equivalent fluid approxima-
tion or in the general case of the poroelasticity proposed by
Biot.

With heavy and rigid skeleton assumptions, only the move-
ment of the fluid phase is considered. This model is retained
in this work, because it is a good approximation for many
porous materials and because the physical model is on same
form that the fluid model (domain Ω1). This leads to the
equivalent fluid model where the pressure p2 is the unique
variable:

Δp2 +
ω2ρ2

K2
p2 = 0 (2)

where the dynamic density ρ2 and the dynamic bulk modulus
K2 are given by the Johnson-Allard [6] model of five param-
eters : Φ, σ, Λ,Λ′, α∞.

ρ̃2 = ρ0α∞ −
φ

iω
σG̃(ω) ; G̃(ω) =

√
1 +

4α2
∞ηρ0ω

iσ2Λ2φ2
(3)

where φ is the porosity, η the air viscosity and Λ is the vis-
cous characteristic length introduced by Johnson [7].

K̃2 =
γP0

γ − (γ − 1)
[
1 + i8η

Λ′2ωB2ρ0
G̃′
]−1 ; G̃′(ω) =

√
1 +

ωΛ′2B2ρ0

i16η

(4)
where Λ′ is the thermal characteristic length introduced by
Champoux and Allard [6], B is the Prandt number, γ is the
specific heat ratio and P0 is the atmospheric pressure.

3.3 Boundary Conditions

The boundary conditions on the rigid walls Γ1 and Γ2 are :

∂p1

∂n
=
∂p2

∂n
= 0 on Γ1and Γ2 (5)

Unlike the case of locally reacting liners, for which an
impedance boundary condition is needed [1], continuity con-
ditions at the interface ΓI for the pressure and the normal
displacement must be verified :

p1 = p2 on ΓI (6)

ξ1.n = φ ξ2.n on ΓI (7)

where ξ is the particle displacement vector and n is the exte-
rior unit normal vector to the boundary. For time-harmonic
fluctuations, momentum equations in both media give:

ik1c1ρ1v1 = ∇p1 and ik1c1ρ2v2 = ∇p2 (8)

where ∇ is the Nabla operator, the velocities being related to
the displacement vectors by:

−ik1c1ξ1 = v1 and − ik1c1ξ2 = v2 (9)

By using the two equations (8) and (9) in (7), one obtains the
condition of continuity in terms of pressure at the interface:

1
ρ1

∂p1

∂n
=

φ

ρ2

∂p2

∂n
on ΓI (10)

The transparent boundary condition on the artificial bound-
aries Σ− and Σ+ are expressed with:

∂p
∂n
= −T±(p) on Σ± (11)

where T−(p) and T+(p) are the ”Dirichlet to Neumann” (DtN)
operators. A classical approach is to determine a modal ex-
pression of the DtN operators. Such expression can be de-
duced from an expansion of the pressure on the guide modes.
Suppose for instance that:

p(x, y) =
∞∑

n=0

An(p)θn(y)eiβn(x−L) for x > L, (12)

then a simple derivation leads to:

T+(p) = −
∞∑

n=0

iβnAn(p)θn. (13)

A main difficulty to justify such an expansion is to prove the
completeness of the modes. Then, an orthogonality relation
is needed to provide the modal amplitudes An(p). An impor-
tant part of this work is then devoted to the determination of
the modes which are solutions of (1) and (2).

4 Modes of the lined guide

4.1 Modes calculation

The modes in the cross section of the guide are the clas-
sical solutions obtained by the method of separation of vari-
ables. Due to the presence of two media, the solution is ex-
pressed in two parts according to the transverse Oy direction.
There is whereas the same propagation constant in both the
porous and the fluid media : β1 = β2 = β :

p(x, y) =

{
θ1(y)eiβx 0 ≤ y ≤ h1

θ2(y)eiβx h1 ≤ y ≤ h2
(14)

This leads to the following eigenvalue problem :

1
ρ1

d2θ1

dy2
= −

( k2
1

ρ1
−

1
ρ1
β2
)
θ1 0 ≤ y ≤ h1 (15)

1
ρ2

d2θ2

dy2
= −

( k2
2

ρ2
−

1
ρ2
β2
)
θ2 h1 ≤ y ≤ h2 (16)

and the boundary conditions become:

dθ1
dy
=

dθ2
dy
= 0 at y = 0 and y = h2 (17)

The solution is looking for in the form :

θ1(y) = a cos(α1y) (18)

θ2(y) = b cos(α2(y − h2))

This leads to two dispersion equations :

ω2

c2
0

= k2
1 = α

2
1n + β

2
n (19)

ω2

c2
2

= k2
2 = α

2
2n + β

2
n (20)
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where α1n and α2n are the eigenvalues for the fluid and the
porous media respectively and c2 =

√
K2/ρ2.

On the other hand, the continuity relations at the interface
of both media (10) lead to the transcendent relationship :

ρ2α1n

ρ1φα2n
tan(α1nh1)[tan(α2nh2) tan(α2nh1) + 1]

+ tan(α2nh2) − tg(α2nh1) = 0 (21)

The eigenvaluesα1n and α2n are determined with the tran-
scendent equation (21) associated to the combination of (19)
and (20):

α2
1n − α

2
2n = k2

2 − k2
1 (22)

α2
1n + α

2
2n + 2β2

n = k2
2 + k2

1 (23)

The method of Newton-Raphson is used to determine the
eigenvalues α1n and α2n with equations (21) and (22) and the
corresponding constant of propagation βn is deduced from
(23). Initial values needed by the Newton-Raphson method
are sought with a finite element discretization in the section
of the guide.

4.2 Some examples

Modes and constants of propagation for a guide lined
with a non locally reacting absorbent material are presented.
The guide of height h1 = 1 contains air with c0 = 344 m/s,
ρ0 = 1, 2 kg/m3. The absorbent material of thickness h =
h2−h1 = 0.5 contains a glass wool with complex and frequency-
dependent physical properties. The parameters ρ2 and K2 are
determined from Johnson-Allard model. Table 1 shows the
characteristics of the glass wool used in this study.

σ (N.s.m-4) φ Λ (m) Λ′ (m) α∞
13000 0.97 110E-06 173E-06 10.17

Table 1: Characteristics of glass wool

n α1n α2n αn (rigid)
1 1.65 - 0.52i 13.80 + 11.30i 0.00 + 0.00i
2 3.34 - 1.72i 13.76 + 10.98i 3.14 + 0.00i
3 5.97 - 0.57i 14.44 + 10.62i 6.28 + 0.00i
4 9.20 - 0.35i 15.57 + 9.86i 9.42 + 0.00i
5 12.37 - 0.25i 17.14 + 8.96i 12.56 + 0.00i
6 11.54 - 13.56i 3.16 + 0.07i 15.70 + 0.00i

Table 2: Propagation constants βn for a guide lined with
glass wool : f = 400 Hz, h1 = 1 et h2 = 1.5.

n β+n (lined) β+n (rigid)
1 7.14 + 0.12i 7.31 + 0.00i
2 6.77 + 0.85i 6.60 + 0.00i
3 4.32 + 0.79i 3.73 + 0.00i
4 0.57 + 5.61i 0.00 + 5.95i
5 0.31 + 9.99i 0.00 + 10.23i
6 14.72 + 10.63i 0.00 + 13.91i
7 12.93 + 11.98i 0.00 + 17.38i

Table 3: Propagation constants βn for a guide lined with
glass wool : f = 400 Hz, h1 = 1 et h2 = 1.5.

Figure 3, shows the transverse distribution of the first
eleven modes in the guide for f = 400 Hz (k1 = 7.306,
k2 = 14.957+10.482i). One can observe two types of modes
for the lined guide (see Figure 3-bottom) contrary to those of
the rigid guide (Figure 3-top).

The first type (1st, 2nd, 3rd, 4th, 5th, 8th, 10th and 11th
modes) are modes whose repartition are mainly located in
the air while a rapid decrease appears in the porous material.
These modes have the same appearance as 1st, 2nd, 3rd, 4th,
5th, 6th, 7th and 8th modes of the rigid guide (see Tables 2
and 3 and Figure 3-top). The second type of modes (6th, 7th
and 9th modes) are modes whose repartition are mainly lo-
cated in the porous material. It is easy to distinguish these
two types of modes on the curve of βn in the complex plane
(Figure 4-bottom): the modes in air (red o and blue *, which
propagate in positive and negative x direction respectively)
and modes in the porous (red . and blue +, which propagate
in positive and negative x direction respectively).

Regarding the modes in the fluid, for a rigid guide it is
recalled that there is an infinite number of evanescent modes
(βn pure imaginary) and a finite number of propagativemodes
(βn pure real) (see Figure 4-top). As expected with the porous
material, all modes are attenuated (Figure 4-bottom), but the
first three modes are almost propagative (red o and blue *).
We still have a finite number of (almost) propagative modes
and an infinite number of (strongly) evanescent modes which
correspond to pseudo cut-off phenomenon.
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Figure 3: Module of eigenmodes for f = 400 Hz - top: rigid
guide, bottom : guide lined with glass wool
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Figure 4: Constants of propagation for f = 400 Hz - top:
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5 Orthogonality relation and DtN op-
erator

Knowledge of the modes permits to write the modal ex-
pansion of the pressure, but writing the DtN operator requires
also the definition of an orthogonality relation to the calcula-
tion of the modal coefficients An [1] [8].
Multiplying the equations (15) and (16) by θ̄1m and θ̄2m and
integrating respectively over [0, h1] and [h1, h2], yields to:

−
1
ρ1

∫ h1

0

dθ1n

dy
dθ̄1m

dy
dy +

1
ρ1

dθ1n

dy
(h1)θ̄1m(h1)

= −

⎛⎜⎜⎜⎜⎝ k2
1

ρ1
−
β2

n

ρ1

⎞⎟⎟⎟⎟⎠ ∫ h1

0
θ1nθ̄1mdy (24)

and

−
φ

ρ2

∫ h2

h1

dθ2n

dy
dθ̄2m

dy
dy −

φ

ρ2

dθ2n

dy
(h1)θ̄2m(h1)

= −φ

⎛⎜⎜⎜⎜⎝k2
2

ρ2
−
β2

n

ρ2

⎞⎟⎟⎟⎟⎠ ∫ h2

h1

θ2nθ̄2mdy (25)

Adding (24) and (25), and taking into account the continuity
relation (10) at the interface between the fluid and the porous
material gives:

−
1
ρ1

∫ h1

0

dθ1n

dy
dθ̄1m

dy
dy −

φ

ρ2

∫ h2

h1

dθ2n

dy
dθ̄2m

dy
dy

= −

⎛⎜⎜⎜⎜⎝ k2
1

ρ1
−
β2

n

ρ1

⎞⎟⎟⎟⎟⎠ ∫ h1

0
θ1nθ̄1mdy−φ

⎛⎜⎜⎜⎜⎝ k2
2

ρ2
−
β2

n

ρ2

⎞⎟⎟⎟⎟⎠ ∫ h2

h1

θ2nθ̄2mdy

(26)

Exchanging the roles of m and n and conjugating one obtains

after subtraction:

φ(
1
ρ̄2
−

1
ρ2

)
∫ h2

h1

dθ̄2m

dy
dθ2n

dy
dy = φ(

k̄2
2

ρ̄2
−

k2
2

ρ2
)
∫ h2

h1

θ̄2mθ2ndy

+ (
β2

n

ρ1
−
β̄2

m

ρ̄1
)
∫ h1

0
θ̄1mθ1ndy + φ(

β2
n

ρ2
−
β̄2

m

ρ̄2
)
∫ h2

h1

θ̄2mθ2ndy

(27)

As observed for a guide with locally reacting lining [1],
the modal eigenvalue problem is no longer self-adjoint and
the modes are no longer orthogonal for the usual scalar prod-
uct because the parameters ρ2 and k2 are complex. However,
exchanging the roles of m and n in (26) without conjugating
leads to (with ρ̄1 = ρ1 and k̄1 = k1) the orthogonality relation:

1
ρ1

∫ h1

0
θ1mθ1ndy +

φ

ρ2

∫ h2

h1

θ2mθ2ndy = 0 (28)

This relation correspond to a bi-orthogonality relation [1]:

(θn, θm)∗ =
∫ h1

0

1
ρ1
θ1nθ1mdy +

∫ h2

h1

φ

ρ2
θ2nθ2mdy (29)

The modes can be normalized using the bi-orthogonality re-
lation (29), the amplitude of modes (19) becomes:

bn = an
cos(α1nh1)

cos(α2n(h1 − h2))
=

√
1

f + g
cos(α1nh1)

cos(α2n(h1 − h2))
(30)

where

f =
2α1nh1 + sin(2α1nh1)

4α1nρ1

g =
φ cos2(α1nh1)

4α2nρ2 cos2(α2n(h1 − h2))
[2α1n(h2 − h1)+

sin(2α2n(h2 − h1))]

Using the scalar product defined above (29) at x = L,
the coefficients A+n introduced in (12) are given by A+n =
(p+, θn)∗. By derivation, the DtN operator on the boundary
Σ+ (resp. Σ−) is expressed by:

T+(p) = −
∑
n≥0

iβ+n (p+, θn)
∗θn(y) (31)

with:

θn(y) =

{
θ1n(y) 0 ≤ y ≤ h1

θ2n(y) h1 ≤ y ≤ h2
(32)

The variational formulation associated to equation (1) and
(2) and boundary conditions (5), (10) and (11) is obtained by
multiplying equation (1) and (2) by a test function ψ, inte-
grating over Ω1 and Ω2, and applying Green’s theorem:

∫
Ω1

⎛⎜⎜⎜⎜⎝ 1
ρ1
∇p1∇ψ −

k2
1

ρ1
p1ψ

⎞⎟⎟⎟⎟⎠ dΩ

+

∫
Ω2

⎛⎜⎜⎜⎜⎝ φ
ρ2
∇p2∇ψ −

φk2
2

ρ2
p2ψ

⎞⎟⎟⎟⎟⎠ dΩ

−

∫
Σ+

T+(p)ψ dΣ +
∫
Σ−

T−(p)psi dΣ = 0 (33)

where T±(p) = ∓
∑
n≥0

iβ±n (p±, θn)∗θn(y).
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6 Numerical results

6.1 Propagation in a semi infinite Guide

Knowledge of the transverse modes and the associated
propagation constants give an analytic solution to test the
transparent boundary condition developed in this study.

Thus, the distribution of pressure (isosurfaces) in a semi
infinite guide troncated by an artificial boundary Σ+ located
at x = L = 2 is presented. A mode is imposed on the bound-
ary Σ− (x = 0). The computational domain is composed of
740 Lagrange elements of second order. Simulations are per-
formed using the finite element library MELINA [9]. The
DtN operator is calculated with the first twenty modes.

Figure 5 presents the pressure in the guide when the sec-
ond mode (mode variation in air) is imposed on Σ− for f =
400 Hz. A rapid decrease in the glass wool is observe. For
this example the solution with the DtN operator is in a good
agreement with the analytical solution. The relative error is
0.77%.

Figure 5: Module of the pressure f = 400 Hz (h1 = 1,
k1 = 7.306; h2 = 1.5, k2 = 14.957 + 10.482i (a) with DtN

(b) analytical solution

6.2 Radiation of a source in an infinite guide

We now consider a circular source f = 1 of radius R =
0.15, located in the fluid medium of an infinite lined guide.
The guide is truncated with artificial boundaries Σ− at x = 0
and Σ+ at x = 1 where DtN operators are used. Solutions
found with DtN operators are compared to those from the
utilization of Perfectly Matched Layer (PML) of thickness
e = 0.4 placed on both sides of Σ− and Σ+. The computa-
tional domain consists of 2682 Lagrangian elements of sec-
ond order. The DtN operator is again calculated with the first
twenty modes.

Figure 6 shows the radiation of a source placed in the
fluid medium and the influence of the porous material. The
solutions with the DtN operator and the PML are very simi-
lar, the relative error is 0.024%.

7 Conclusion

The effects of non locally reacting absorbing material at a
wall of an infinite waveguide are taken into account in order
to express a transparent boundary condition based on a DtN
map. This new transparent boundary condition is a general-
ization of the transparent boundary condition developed for
guides with locally reacting liner. Modes have been calcu-
lated in a guide with air and a porous material described by
an equivalent fluid model. By examining the modes, it was
found that there are some modes for which amplitude var-
ied in the porous medium and some other modes for which

Figure 6: Module of the pressure (a) with DtN (b) pressure
module with PML for the two media. f = 400 Hz (h1 = 1,

k1 = 7.306; h2 = 1.5, k2 = 14.957+ 10.482i)

amplitude varied in the fluid medium. The generalization of
the DtN operator for bulk reacting material gives results in
good agreement with analytical and PML solutions. As for
the locally reacting lining, the main difficulty is related to the
fact that the modes are no longer orthogonal for the usual
scalar product, nevertheless a bi-orthogonality condition can
be used again.
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