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A classical and dimensionless model of the functioning of single reed instruments such as the clarinet and the
saxophone is considered. In this model, the nonlinearity is controlled by two parameters: One linked to the blowing
pressure, the other one to the reed opening at rest. Transient commands are applied on this two parameters. In
particular, It is shown that a transient decay of the blowing pressure still induces a nonlinear functioning of the
system, while a transient decay of the reed opening leads to a free oscillation of the resonator, hence giving a way to
estimate the complex frequencies of the impedance peaks. The results are compared to those obtained on natural
sounds thanks to a monitored musician, both in pressure and reed opening. The meaning of the dimensionless
control parameters are discussed with respect to the actual command of a musician.

1 Introduction

The study of musical instruments seen as nonlinear dy-
namical systems under non stationary commands has recently
become an important topic of investigations in the past few
years. Though few results have been published (see e. g.
[1]), the understanding of the behavior of such systems is
very important. It is particularly important in the field of
sound synthesis [2]. Indeed, it is a priori difficult to know
how the continuous control parameters should be varied to
control naturally a synthesis model during attacks and ex-
tinctions. Moreover, classical wind controllers incitate to use
a command related to the blowing pressure to give birth or
death to the sound. Is it relevant? A first goal of this paper
is to highlight the difference between transients, depending
on the control parameter which is varied. Two cases are con-
sidered: A blowing pressure transient and an incoming flow
transient. Another goal of this paper is to compare the sim-
ulation results with measurements performed on a musician
equipped with an instrumented mouthpiece. After a brief re-
call of the classical sound production model used, the paper
focuses on the two types of possible transients commands in
the model and their effects on the attack and extinction tran-
sients. The results are then compared to those obtained on a
musician playing the same note.

2 Dimensionless functioning model

2.1 Input impedance model

The impedance model used here corresponds to that dis-
cussed e.g. by Dalmont et al. [3]:

Ze(ω) =
1

1
j tan(kL) +

1
jkxe
+

jkxe

3

(1)

In this model, a simple volume is mounted in parallel with
a truncated cone. L represents the length of the cone, xe rep-
resents the length of the missing part of the cone and k = k(ω)
is the wavenumber including viscothermal losses.

The term jkxe/3 models the mouthpiece whose volume
corresponds exactly to that of the missing part of the cone and
ideally compensates for the inharmonicity of the impedance
peaks of the truncated cone at low frequency. This particular
mouthpiece volume is derived from the continuous fraction
expansion of 1/( j tan(kxe)) � 1/( jkxe) + jkxe/3 for small
values of kxe.

In figure 1, the simulated input impedance is fully defined
with the following geometrical parameters: The input radius
of the cone is r = 6mm. The top angle is θ = 3.36. The
length is L = 0.75m. These parameters lead to a maximum
of the first impedance peak at 174Hz.
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Figure 1: Top: impedance modulus. Middle: impedance
phase. Bottom: impulse response

Figure 2 shows, on top the variations in a log scale of the
amplitudes with respect to the time of the first four partials
of the inverse Fourier transform of the impedance (impulse
response), in the bottom the instantaneous frequency of the
partials divided by their rank.
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Figure 2: Top: amplitudes of the first four partials of the
impulse response. Bottom: frequencies of the first four

partials divided by their rank

2.2 Reed dynamics

The reed is modelled as a linear single degree of free-
dom system and its dimensionless displacement x(t) (defined
by the ratio between the physical reed position and the reed
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position at rest) is given by the following dynamic equation:

1
ω2

r

d2x(t)
dt2

+
qr

ωr

dx(t)
dt
+ x(t) = pe(t) − γ(t) (2)

where ωr = 2π fr and qr are respectively the circular fre-
quency and the quality factor of the reed.

The parameter γ is the ratio between the pressure pm in-
side the player’s mouth (assumed to be constant in the steady-
state regime) and the static beating reed pressure. In a loss-
less bore and a massless reed model, γ typically evolves from
0 to 1, γ = 1

3 being the oscillation threshold and γ = 1
2 corre-

sponding to the value above which the reed starts beating.

2.3 Nonlinear characteristics

The classical nonlinear characteristics used here is based
on the stationary Bernoulli equation and links the acoustic
flow (the product between the opening of the reed channel
and the acoustic velocity) to the pressure difference between
the bore and the mouth of the player. The opening of the reed
channel S (t) is expressed from the reed displacement by:

S (t) = ζ × Θ(1 + x(t))(1 + x(t))

where Θ denotes the Heaviside function the role of which
is to keep the opening of the reed channel positive by can-
celling it when 1 + x(t) < 0. The parameter ζ characterizes
the whole embouchure and takes into account the lip posi-
tion and the section ratio between the mouthpiece opening
and the resonator. It is proportional to the square root of the
reed position H at equilibrium.

The acoustic flow is finally given by:

ue(t) = S (t)sign(γ(t) − pe(t))
√
|γ(t) − pe(t)| (3)

3 Numerical study

We investigate the behavior of the attack and extinction
transients on simulated sounds using the synthesis scheme
proposed in [4]. The aim of this section is to compare the
transients produced by Heaviside functions applied on the
blowing pressure (γ) and on the admissible volume flow (con-
trolled by ζ). The signal under consideration is the mouth-
piece pressure pe(t).

A transient on ζ can be related to either an attack or an
extinction produced by the tongue that obturate (ζ = 0) or
liberate (ζ � 0) the entrance of the reed channel.

A transient on γ can be related to a throat attack or extinc-
tion with no modification of the embouchure or the tongue
position.

3.1 Attack transient

When the transient (Heaviside function) is applied on ζ
(figures 3 and 4), the attack transient depends on the steady-
state value of ζ. A high value, corresponding to a weak force
applied by the lip on the reed, leads to a fast jump to the
permanent regime (figure 4)), while a low value leads to an
unstable, non periodic regime until t = 0.5s, as it can be seen
on the bottom of figure 3

Figures 3 and 5 reveal, for the same values of ζ and γ in
the steady-state an identical behavior of the attack transient.
This can be explained by the fact that before the transient,
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Figure 3: Transient on ζ. Top: amplitudes of the first four
partials of the mouthpiece pressure. Bottom: frequencies of

the first four partials divided by their rank. ζ = 0.6,
γ = 0.45.
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Figure 4: Transient on ζ. Top: amplitudes of the first four
partials of the mouthpiece pressure. Bottom: frequencies of

the first four partials divided by their rank. ζ = 1.2,
γ = 0.35.

in both cases, the system is totally at rest with null initial
conditions (pe(t) = ue(t) = 0 for t < 0.1s).

3.2 Extinction transient

The top pictures of figures 3 and 4 reveal, from t = 1s,
a linear decrease of the amplitudes Pi (in dB) with respect
to time. This corresponds to an exponential decrease of the
Pi in a linear scale, as expected for a damped linear system.
The slopes of decrease for each Pi during the transient do
not depend on the control parameters ζ and γ since in this
case the bore is closed at its entrance when the transient on
ζ has started : this is confirmed by the comparison of figures
3 and 4 which shows same slopes, but a different duration
for the system to return at rest since amplitudes of the steady
state (initial condition of the extinction transient) are differ-
ent. Moreover, as expected since ζ = 0 cancels all the non-
linear effects of the coupling with the exciter, these slopes are
exactly the same as the one measured in figure 2.

As far as the instantaneous frequencies Fi are concerned,
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Figure 5: Transient on γ. Top: amplitudes of the first four
partials of the mouthpiece pressure. Bottom: frequencies of

the first four partials divided by their rank. ζ = 0.6,
γ = 0.45.

shortly after the beginning of the extinction transient, they
jump exactly to the resonance frequencies of the resonator.
Here again, this is expected.

On the other hand, figure 5 shows a very different sce-
nario at the extinction. First of all, the extinction transient is
far more rapid than in the previous cases. Moreover, a closer
look at the top picture reveals that the decrease of the instan-
taneous amplitudes Pi is no more linear. This is the sign that
the nonlinear coupling between the exciter and the resonator
is still active. Indeed, even if the blowing pressure is set to
γ = 0 at the beginning of the transient, the volume flow at the
input of the bore does not vanish according to equation 3.

The evolution of the instantaneous frequencies is hardly
distinguishable on the bottom picture of figure 5 because of
the very short transient, but F1 seems to increase rapidly,
whereas the first natural resonance frequency of the bore is
below the playing frequency.

Morover, a complementary set of simulations has shown
the duration of the transient does not depend on the reed res-
onance frequency and quality factor and does not depend on
the values of ζ and γ during the steady-state, hence the slope
changes, depending on the values of these parameters, con-
trary to the case of an extinction transient applied on ζ where
the slope is constant.

4 Experimental study

Figure 6 shows, from top to bottom, the pressure mea-
sured in the mouth of a musician, the pressure measured in
the mouthpiece of an alto saxophone and the force applied
by the lower lip of the musician on the reed. The musician
played the same note as the one used for the simulations. The
device used to collect these signals is described in [5].

Figure 7 shows, on top the variations in a log scale of the
amplitudes with respect to the time of the first four partials
of the mouthpiece pressure, in the bottom their instantaneous
frequencies divided by their rank.

Many clues on figures 6 and 7 indicate that the attack and
extinction transients are caused by the tongue obturating the
reed channel entrance.
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Figure 6: Top: mouth pressure. Middle: mouthpiece
pressure. Bottom: Force exerted on the reed
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Figure 7: Top: amplitudes of the first four partials of the
mouthpiece pressure. Bottom: frequencies of the first four

partials divided by their rank.

• The mean mouth pressure (figure 6 , top) does not vary
much before and after the high frequency component
vanishes.

• On the FSR signal (figure 6 , bottom), concerning the
extinction transient, the high frequency component dis-
appears soon after the transient has begun (no more
oscillations distinguishable after t � 0.15s. Note that
if it is admitted that the tongue blocks the flow, the
analysis of the FSR signal after the beginning of the
extinction transient is useless since the force applied
on the reed by the lower lip does not control anymore
the reed opening cross-section. Concerning the attack
transient, it can be observed that the force applied on
the reed is first close to zero, hence corresponding to
a high value of ζ, and increase slowly until the right
pitch is obtained. As it been been observed on the sim-
ulations, such a high value of ζ at the onset allows to
reach the periodic regime very quickly.

• The comparison of the duration of the extinction tran-
sient between the mouth pressure (figure 6, top) and
the mouthpiece pressure (figure 6, middle) reveals a
fare more rapid decrease of the oscillations in the mouth.
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This suggests that for t > 0.14, the two air-columns are
disconnected : on one side the vocal tract with damped
resonance peaks (hence a brutal decrease of the acous-
tic component), and on the other side the air column
in the bore of the saxophone with sharper resonance
peaks (hence an extinction ten times longer). Concern-
ing the attack transient, it can be observed that the rais-
ing of the oscillating component of the mouth pressure
is much faster than that of the mouthpiece pressure, as
it has been shown in [6].

• The top picture of figure 7 reveals a linear decrease of
the amplitude Pi (in dB) with respect to time (when
the signal to noise ratio is sufficiently high). This cor-
responds to an exponential decrease of the Pi in a lin-
ear scale, as expected for a linear system. However the
decreasing rates are not the same as those observed on
figure 2 (although they are of the same order). This
discrepancy should be imputed to the model of the in-
put impedance, where neither the losses nor the reso-
nance frequencies are exactly fitted on the instrument
played by the saxophonist. Indeed, comparing the bot-
tom panels of figures 7 and 4 shows that in the exper-
iment, the playing frequency is lower than that of the
first impedance peak while it is higher in the simula-
tion (this is partly due to a strong coupling with the vo-
cal tract since the oscillating component in the mouth
is of the same order than that in the mouthpiece) and
that inharmonicity of the first two impedance peaks is
much higher in the experiment than in the simulation.

As a conclusion, we consider that the transients performed
by the musician could be modelled by a transient in the con-
trol parameter ζ. This does not mean that the transient is as
abrupt as the Heaviside function used in the numerical study.
In the experiment, it seems that ζ is not used to modify the
reed channel opening at rest but to cancel or allow the acous-
tic flow with the tongue without changing the lip force ex-
erted on the reed. Moreover, the analysis of the extinction
transients could be used to extract modal parameters : modal
frequencies and damping, without impedance measurements.

5 Conclusion

From simulated signals, it has been shown that the be-
havior of the attack transient seems to be independent of the
command used, at least when Heaviside profiles are consid-
ered. On extinction transients, the type of command plays
a very important role. A pressure transient leads to a very
fast extinction of the sound. A reed channel closing tran-
sient leads to a decrease of the partials directly related to
the quality factor of the impedance peaks. It can be noted
that both transients sound unrealistic from a perceptual point
of view, due to the rudimentary impedance model and com-
mands used. On the natural sound studied, it seems that both
attack and extinction transients correspond to a reed channel
opening/closing transient, hence to the flow cancellation.

In the model used, the dimensionless parameters γ and ζ
were primary defined from stationnary hypotheses that allow
to relate them with physical controls used by the musician.
Though ζ is mostly related to the reed channel opening at
rest, it has been highlighted that it can be used as a way to

simulate for sound synthesis purposes a tonguing effet that
rapidly liberates or obturates the reed channel opening.

From a “system” point of view, an hypothesis is that the
behavior of the transients could be related to the past values
of the acoustic flow: Whatever the attack transient applied,
the behavior is the same since the acoustic flow is null be-
fore the transient. On the extinction transient, the acoustic
flow is abruptly cancelled (transient on ζ), or not (transient
on γ), leading to very different behaviors. However, in this
study, we have not considered the behavior of the acoustic
flow during the transients since it would have been difficult
to compare the results obtained to measurements.
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