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The back-scattering of plane waves by complex targets of finite geometry is investigated. The information 
obtained from the echoes (in amplitude and phase) is used to characterize properties of the scatterers including 
shape, size and orientation. Simple geometries including spheres, cylinders and spheroids are often used in 
underwater acoustic and medical imaging to model the scattering of structures, such as fish swim bladders, blood 
cells, or heart fibers. Theoretical models include the effects of diffraction, reflection and transmission linked to 
shape, composition and size relative to the wavelength of the different objects. In particular, analytical solutions 
derived by Faran exist for simple geometries such as spheres and cylinders, but for more complex cases, 
numerical methods such as the T-matrix, or approximate simple solutions must be used. In this work, the Finite 
Element Method (FEM) was used to model the scattering from submerged targets with simple geometries with 
elastic and rigid boundary conditions. A vibroacoustic model is used to couple the structure with the surrounding 
fluid medium. Numerical results show good agreement with analytical solutions and experimental data.  

1 Introduction 
The acoustic scattering of a body contains relevant 

information about the properties of the target, including 
material composition, size and orientation. Exploring and 
understanding the underlying mechanisms of the formation 
of the echo, is necessary in order to develop reliable 
methods for the automatic identification of the target. One 
of the most important theoretical frameworks for this 
problem is the Resonant Scattering Theory (RST) [1]. It has 
shown that, for elastic targets, the fluctuating frequency 
domain behaviour of the scattered signal is caused by the 
superposition of modal resonances on the scattering 
response of a perfectly rigid body. Between two resonance 
frequencies, the scattering shows behaviour similar to that 
of an impenetrable rigid body. These elastic effects often 
play a dominant role in the overall scattering response, 
particularly at the intermediate frequency ranges, where the 
wavelength is comparable to the target dimensions. This 
frequency range is particularly important for fisheries 
acoustics. 

 In general, the interacting effects of unknown target 
orientation and composition present one of the most serious 
challenges for acoustic data interpretation [2]. Target 
strength (TS) alone has proven insufficient to discriminate 
between similar acoustics echoes, since widely dissimilar 
targets can present the same TS under differing conditions. 
In this context, target phase has been explored as an 
additional source of information for acoustic target 
identification. The phase of the echo is usually ignored in 
conventional studies, however, it has been shown [3] that 
the characteristics of the phase of a signal reflected from an 
object manifest many of its material properties, so the study 
of the complex scattering from fundamental finite shapes, 
such as spheres and cylinders can provide key insights into 
the mechanisms of echo formation and the connection 
between phase and target characteristics. 

In the present paper, the problem of sound scattering of 
a plane wave, normal and obliquely incident on an elastic 
cylinder of finite length and a prolate spheroid submerged 
in water is considered.  The work presented here provides a 
direct comparison of experimental measurements presented 
in [4], and numerical results obtained by using the Finite 
Element Method with a vibroacoustic model that couples 
the target structure with the surrounding fluid medium.  

2 Finite element modeling 
A finite element simulation of rigid and elastic target 

was obtained using the commercial FE software COMSOL 
Multiphysics. Two different models have been chosen to 
simulate the scattering of a plane wave by finite length 

targets. For axially incident waves, the axial symmetry of 
the target (sphere, finite cylinder and prolate spheroid) 
warrants the use of 2D-aximetric models, with a significant 
resolution of computational cost. For other angles of 
incidence 3D models are used, as illustrated in Figure 1. 
The mirror symmetry of the xy plane is taken into account 
for simulations. Both models consist of an elastic or rigid 
body of finite length submerged in a fluid domain of water 
bounded by a perfect matched layer (PML). The PML has a 
width of 2 cm meshed with a 6.8 mm element size. In Table 
1 the parameters of each simulation are presented, including 
size, Young  modulus, Poisson  ratio, density, and the 
number of elements for the minimum wavelength simulated 
in both media.   

Table 1: Targets parameters used for numerical simulations. 

 Tungsten 
carbide 
sphere 

Steel 
cylinder 

Aluminium 
spheroid 

Radius 
(cm) 4.2 1 1.5 

Length 
(cm)  12 12 

Young
modulus 
(MPa) 

614.5 190.7 70 

Density 
(Kg/m3) 15022 7910 2700 

Poisson
ratio 0.202 0.254 0.33 

Elements 
(Target/ 
Water) 

10/8 8/6 8/6 

 

Figure 1: Schema of the FE model.  
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Figure 2: Target Strength from a: a) Tungsten carbide sphere, b) steel cylinder in end-on incidence, c) Aluminium prolate 
spheroid in end on incidence. The associated target dimensions are provided en Table 1.

3 Amplitude and phase scattering in 
end-on incidence 

The results for both amplitude and phase of the 
scattered pressure by different targets are presented in this 
section. A 2D-axisymmetric model is used and the incident 
plane wave is considered to propagate along the axial 
direction. 

3.1 Target Strength  
In Figure 2 the TS of a tungsten carbide sphere, a steel 

finite cylinder and an aluminium prolate spheroid are 
presented. The TS of the tungsten carbide sphere, shown in 
Figure 2.a is compared with the Faran analytical model [5], 
with differences smaller than 0.5 dB between both models 
across the entire frequency range. Resonances associated 
with the maxima (and minima) of the TS and correspond to 
specific eigenmodes excited by different circumferential 
waves that encircle the target and interact constructively 
and destructively. Therefore, the resonances are related to 
the dimensions and composition of the object. For the case 
of elongated bodies, resonances may occur due to waves 
propagating in meridional and helical paths and reflected 
from the far end [6]. 

Figures 1.b and 1.c show the TS from the cylinder and 
 

spheroid respectively, compared with measured data 
The RMS difference across the entire bandwidth 

between experimental data and the models is approximately 
1.6 dB for the cylinder. In the case of the prolate spheroid, 
the broadband RMS error is higher, close to 5dB, although 
the general trend of the response indicates modest 
agreement. The sources of error can largely be ascribed to 
experimental factors, such as a lack of exact knowledge 
about material composition, and inaccuracies in the target 
rotation mechanism. 

3.2 Target Phase 
The phase information can be extracted, as in the case of 
amplitude, from the acoustic response following the 
procedure detailed in [7], using a differential phase 
measurement between two excitation frequencies, with the 
aim of removing range effects. 
Figure 3 illustrates the target phase of a sphere, cylinder 
and spheroid at end on incidence. The validation is 
performed by comparing the numerical results, with modal 
solutions [5] in the case of the sphere, and measured data in 
the other cases. In Figure 3.a, the numerical results are 
shown to be very accurate in comparison to the theoretical 
model. Agreement is also found between measured and 
model data for the cylinder in Figure 3.b and the spheroid 
in Figure 3.c. 

 

Figure 3: Target phase from a: a) Tungsten carbide sphere, b) steel cylinder and c) Aluminium spheroid in end-on incidence 
obtained using a dual frequency transmission method.
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The analysis of target phase, and in particular differential 
 and 

artefacts associated with the unwrapping process. This can 
be observed in the case of cylinder, where the low 
frequency features agree mor  factors are 
removed. For the prolate spheroid in Figure 3.c these 
ambiguities have been eliminated, but the correction 
algorithm results in a somewhat ragged appearance.  
The phase response is related to the geometry and material 
composition of the target. In the case of a solid sphere, 
Figure 3.a, a smooth oscillatory regime is present at low 
frequencies, between 0 and 30 kHz. This behaviour is 
similar to the oscillation observed in Figure 2.a in the 
amplitude curve. Both are due to the interference pattern 
created by diffraction of surface Franz waves. Their period 

frequency, fFranz, is given by the path length; it can be 
obtained from the following expression [8] 

a
cf Franz 2

22.1  (1) 

which for a speed of sound c=1486 m/s, and a sphere with 
radius a = 84 mm, is approximately equal to 6870 Hz, 
which corresponds to the period observed in Figure 2.a and 
3.a. 

In the resonant regime, important phase changes with 
respect to frequency are present, and may be related to the 
coupling angles of longitudinal, shear, or Rayleigh waves. 

 

Figure 4: TS from 12 cm-long steel cylinder as a function of orientation and frequency. a) and c) illustrate measured data with 
a frequency step of 500 Hz and angle step of 1.8. b) and d) illustrate  the numerical results obtained with a frequency step of 

500 Hz and angle step of 5.4º in b) and 1.8º in d). 

 

Figure 5: TS from 12 cm-long aluminium prolate spheroid as a function of orientation and frequency. a) illustrates the 
experimental measurements with a frequency step of 500 Hz and angle step of 1.8, and b) illustrates numerical results with a 

frequency step of 500Hz and angle step of 5.4º.
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Figure 6: Rigid and elastic form function (a,b,c), resonant spectrum (d,e,f) and phase spectrum (g,h,i) for a tungsten carbide 
sphere (a,d,g), steel cylinder (b,e,h) and aluminium spheroid (c,f,i) in end on incidence. 

4 Target strength an obliquely 
incidence 

Finite cylinders and spheroids are useful for the study of 
the effects of oblique incidence on an elongated body. 
Analytical models in this case are not simple or not 
available for specific geometries. Thus, experimental 
measurements have been analyzed by comparison with the 
simulation results provide by numerical methods such as 
FEM. 

FEM and measured target strength results for the steel 
cylinder are presented in Figure 4 where 0º and 180° 
correspond to broadside incidence and 90° is end-on 
incidence. All figures show results obtained with a 500 Hz 
frequency step. The angular resolution is 1.8º in the 
experimental measurements and 5.4º for the numerical 
simulations presented in Figure 4.b and 1.8º in Figure 4.d. It 
is evident that better agreement occurs between Figures 4.c 
and 4.d. Due to the computational costs of the fine mesh at 
high frequencies, the frequency range covers from 50 kHz 
to 100 kHz.  

Figure 5 illustrates FEM and measured target strength 
results for the aluminium spheroid with a 500 Hz frequency 
step and a rotation resolution of 3.6º for the measured data, 
Figure 5.a, and 5.4º for the COMSOL data, Figure 5.b. The 
agreement in this case is better than that for the cylinder, 
despite the poor angular resolution. The TS is strongly 
influenced by the geometry and orientation of the target. 
Agreement improves near end on incidence, where the 
cylinder has brighter specular features due to the flat end 
caps. 

5 Resonant and Phase spectrum 
One of the advantages of FEM in the study of the 

scattering of an elastic object is that it can obtain the rigid 
scattering response for the same geometries. According to 
resonant scattering theory [1], the scattering response of a 
hard elastic object is comprised a series of superimposed 

resonances in a background rigid response. Thus, it is 
possible to obtain the resonant spectrum from the difference 
between the elastic and rigid responses. In Eq. (2), ff 
indicates the normalized amplitude pressure or form 
function. 

rigidelasric ffffRS  (2) 

In this work, we investigate the information that can be 
extracted from the phase. With this goal, a phase spectrum 
(PS) is defined from the angle of the ratio of elastic and 
rigid form functions, as defined in Eq. (3). With this 
formulation, the phase does not include the information 
concerning the measurement range, and only provides the 
phase counterpart related to the elastic properties of the 
target. 

rigid

elastic

ff
ffanglePS  (3) 

5.1 End on incidence 
Figure 6 illustrates the elastic and rigid form functions 

(first row), and the resonant and phase spectrum (second 
and third row) for the three simulated targets in end-on 
incidence.  
In the first two cases, the sphere and cylinder, each form 
function of the elastic target shows a rigid behaviour 
followed by the excitation of some resonances, which 
appear superimposed on the background rigid response.   

The non-null values of the resonant spectrum are related 
to the excitation of the resonances. Likewise, it is noted that 
the phase spectrum, shown in the last row of Figure 6, is 
null for the frequencies and angles for which the elastic 
target presents a rigid behaviour, since, as expected, both 
rigid and elastic targets have the same form function as 
both amplitude and phase. In the region of resonance, 
Figures 6.g and 6.h exhibit phase shifts in the excitation of  
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Figure 7: Resonant (a,c) and phase (b,d) spectrum for steel cylinder (a,b) and aluminium spheroid (c,d).

resonances, which can be associated with abrupt changes 
phases observed in the region of resonance in Figure 2. 

For the spheroid, although the resonant theory is also 
valid [9], very close eigenmodes with small amplitude are 
excited, so the identification of the resonances in the 
resonant spectrum, which maximum is 0.03, and the phase 
shifts in the phase spectrum are not obvious. 

5.2 Obliquely incidence 
Finally, Figure 7 shows the resonant spectrum (7.a, 7.c), 

and the phase spectrum (7.b, 7.d), for the steel cylinder (7.a, 
7.b), and aluminium spheroid (7.c, 7.d), for oblique 
incidence. 

 It is noted that effectively the resonances appear as 
relative maximum amplitude in the resonant spectrum, 
which is associated with a phase shift in the phase spectra. . 
In fact, the detection of resonant regions is more evident 
through phase changes, because the resonant spectrum 
depends on the amplitude resonances which are more 
variable. A related usage of target phase also applied in the 
identification of resonances has been previously explored 
by Maze [10]. 

6 Conclusions  
The finite element method allows the computation of 

the acoustic scattering by submerged, finite targets to be 
obtained into the resonance frequency range. The amplitude 
and phase of the scattering responses are consistent with the 
experimental results. These responses are dependent on the 
geometry and orientation of the target and have proven 
useful for identification and added understanding of 
scattering processes. Target phase could potentially be 
added as an additional parameter for characterization of 
scatterers. However more work is needed for an 
unambiguous interpretation of the phase response. In this 
respect, FEM simulations can be very useful. However the 
main obstacles in this approach are the enormous 
requirements for computing power, which slow down the 
development process and restrict the range of targets that 
are convenient for practical simulation. 
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