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Power spectral subtraction (PSS) is a technique used to improve the signal-to-noise ratio in many applications in 
the recent years. This paper reports a successful application of a geometric-based PSS algorithm to improve the 
performance of automatic speech recognition under noisy conditions. The selected algorithm performs 
significantly better than other traditional spectral subtraction algorithms in the presence of low SNRs with low 
computational cost for speech enhancement. The performance contribution of the algorithm was assessed with 
CMU SPHINX-III speech recognition system using TIDIGITS speech corpus. Data was corrupted with seven 
noise types taken from the NOIZEUS database under seven different noise conditions (SNRs from -5 dB to 20 
dB) for clean and multi-condition training setups. After extensive testing, results demonstrate that the selected 
algorithm is capable of improving recognition performance by 15% over the baseline approach at 0dB SNR 
when multi-condition training is used. The algorithm is particularly robust for noisy environments with low 
SNRs such as those present in car and airports. The algorithm is suitable to enhance the performance of speech 
recognition systems in mobile applications. 

1 Introduction 
Automatic speech recognition (ASR) has received 

considerable attention and has achieved outstanding 
performance in noise-free environments. However, under 
more realistic conditions where background, additive and 
convolutional noise is present; performance degrades 
significantly, discouraging its practical use. The literature 
on robust ASR discusses various approaches to cope with 
this problem. Some approaches attain robustness using one, 
or a combination of techniques that can be grouped as 
speech enhancement/preprocessing techniques, robust 
feature extraction methods, feature post processing 
techniques, and model adaptation to noisy environments.  

Spectral subtraction (SS) methods belong to the class of 
speech enhancement techniques that have been largely 
applied in ASR contexts [1,2]. However, most speech 
enhancement methods are tailored at improving speech 
intelligibility for human listeners and hence, they may not 
perform very well in ASR tasks. These methods aim at 
improving the quality of the noisy speech by reducing the 
noise while minimizing the speech distortion introduced 
during the enhancement process. There are basically three 
sources of errors when spectral subtraction is applied to 
noisy speech, namely magnitude, cross-term and phase 
errors. Cross-term and phase errors are often neglected 
yielding to considerable degradations of recognition 
performance at low SNRs [2].  

Loizou et al. [3] developed a new deterministic, 
geometric-based approach (GA) to spectral subtraction that 
addresses two fundamental shortcomings of the 
enhancement technique: the musical noise and invalid 
assumptions about the cross terms being zero. This paper 
investigates the effect of the application of a geometric-
based power spectral subtraction method to enhance speech 
recognition accuracy under severe noisy conditions and 
demonstrates the effectiveness of the method at very low 
SNRs.  

2 Methods 
Figure 1 shows a block diagram of the ASR system used 

to assess the effect the power spectral subtraction algorithm 
on recognition performance. The experiments were 
designed to evaluate the benefits of combining the spectral 
subtraction method with feature post processing and multi-
condition training to enhance the performance of ASR 
systems for mobile devices. The combined approach is 
contrasted with separate use of the techniques.  

 
Figure 1: Block diagram of the ASR system used. 

2.1 Spectral subtraction 
The spectral subtraction algorithm selected for our 

experiments is the geometric-based power spectral 
subtraction algorithm developed by Lu & Loizou [3]. 
Objective and subjective evaluation of the algorithm using 
the NOIZEUS database [N] showed that the GA SS 
algorithm outperforms other traditional SS algorithms 
especially at low SNRs [3]. Although the primary 
application of the selected algorithm is speech quality 
improvement for human listeners, it has several advantages 
that make it attractive for other applications such as the 
preprocessing stage of ASR systems.  

In [2] authors demonstrated that commonly neglected 
sources of error in SS algorithms can significantly affect 
recognition performance at SNRs around 0 dB. Lu & 
Loizou [1] also demonstrated that as the SNR→±∞, the 
effect of cross terms tends to vanish asymptotically; but 
they can be particularly large at SNRs where most speech 
enhancement algorithms operate. The GA power spectral 
subtraction algorithm [L] has the advantage of 
incorporating the cross terms involving phase differences 
between the noise and the noisy signals. Furthermore, the 
algorithm minimizes the musical noise typically present 
with other approaches. In addition, the selected algorithm is 
computationally efficient requiring few multiply and add 
operations. This make it suitable as a preprocessing stage of 
the automatic recognition systems used for mobile devices.   

 

2.2 Speech corpus 
The ASR experiments reported in this paper were 

performed on a speech corpus that used speech material 
from the TIDIGITS database and eight real-world noises 
from the NOIZEUS database. The TIDIGITS database 
contains over eight hours of high quality recordings of digit 
sequences spoken by 111 male and 114 female US-
American adults. We used all recordings from TIDIGITS 
except the children utterances following the original 
division for training and testing sets of the speech corpus, 
each containing approximately half of the speakers.  
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The TIDIGITS database was downsampled from the 
original rate (20 KHz) to 8 KHz. The speech files were 
initially filtered with the modified Intermediate Reference 
System (IRS) filters specified by the ITU-T P.862 [I] and 
combined with the NOIZEUS corpus [N]. The filtering 
process allowed us adding the noise extracted from the 
NOIZEUS database to the clean speech from TIDIGITS 
without affecting the spectrum of the speech signals.  

The NOIZEUS database contains 30 sentences 
corrupted by eight different real-world noises at 0 dB, 5 dB, 
10 dB, and 15 dB SNRs. The noise includes suburban train 
noise, multi-talker babble, car, exhibition hall, restaurant, 
street, airport, and train-station noise; all of them randomly 
selected from the AURORA database [A]. Noise extraction 
was carried out by subtracting the clean utterances in this 
database from the noisy ones.  

The recordings from the TIDIGIT corpus were 
contaminated with different noise types at 6 different SNR 
levels (namely: 20 dB, 15 dB, 10 dB, 5 dB, 0 dB, and -5 
dB). We computed the energy of each recording from the 
TIDIGITS database and added the noise at the selected 
SNR according to the signal energy level.  

 

2.3 Speech decoding 
We used the CMU’s SPHINX-3 speech recognition 

system [C] to carry out our experiments. The speech 
decoder of this tool is based on Hidden Markov Models 
(HMM) trained from acoustic features. In order to extract 
acoustic features, signal waveforms were segmented into 25 
ms frames at 10 ms frame rate. Pre-emphasis filtering and 
Hamming window were applied to each frame. Feature 
parameterization used 13 Mel-frequency cepstral 
coefficients (MFCC features) in addition to deltas and 
delta-delta coefficients which resulted in a 39-dimensional 
feature vector. Digit context-dependent triphones were 
modeled using 3 state HMMs, 250 tied states and eight 
Gaussian mixtures per state. We used trigram language 
model with weight and word insertion probability 
experimentally determined at 12 and 0.1 respectively. 

 

2.4 Training and test sets 
In order to assess the performance of the selected 

preprocessing technique based on Figure 1, we designed 
various training and testing scenarios: 

• Training on clean speech only (baseline clean 
training) 

• Training on enhanced clean speech using spectral 
subtraction as enhancement technique (SS clean 
training) 

• Training on clean and noisy speech (multi-condition 
–MC–  training) 

• Training on enhanced clean and noisy speech 
(SS+MC  training) 

• All the above scenarios with cepstral mean 
normalization (CMN) as feature post-processing.  

Training on clean data allows us modelling of speech 
without the distortion of any type of noise. It generates 
adequate baseline models for comparative purposes. The 
highest performance should be obtained using these models 

while testing on clean speech. However, a significant 
deterioration of recognition accuracy is expected if speech 
comes from a noisy environment, mainly due to the 
mismatch between the training and testing conditions. 
Training on clean speech also permits checking how well 
the speech enhancement algorithm resembles the clean 
speech spectrum of the noisy speech. The second training 
scenario also uses clean speech for training acoustic models 
but, the GA SS is applied to the training data to allow 
accounting for the distortions potentially included by the SS 
algorithm.  

Two multi-condition training setups permit assessing 
the advantage of using the spectral subtraction algorithm 
when speech models include information about the noise 
types that potentially might corrupt speech data under real-
world environments. Finally, a new set of models are 
created using the same training setups as before, but CMN 
is also included as a feature post-processing technique. We 
selected CMN as it can partially compensate for the shift of 
the mean of the probability distributions of the parameters 
representing the speech with additive noise [A].  

Multi-condition training typically leads to the best 
performance when training and testing is done under the 
same noise environments. However, we should not expect 
the same performance under different noise conditions. For 
this reason, and for MC training, we chose to train acoustic 
models using only a subset of the noise types available and 
the SNRs under consideration. This approach would show 
us how the new trained models would perform under 
unseen noisy conditions.  The noise types selected as part of 
the training set were: restaurant, airport, babble and train 
noise. The clean training set was replicated and 
contaminated with each of these selected noise types at four 
different SNRs (20, 15, 10 and 5 dB). Very low SNRs (0 
and -5 dB) were excluded from the training set. The new 
multi-condition training set had 16 new subsets plus the 
original clean training set.  

Testing sets were created in the same way, but in this 
case, all noise types and SNRs were included. Various 
testing sets were needed in order to assess the effect of pre-
processing (SS) and post-processing (CMN) techniques 
when applied together or separately. Each test set is then 
comprised of 49 subsets (a clean subset plus 8*6 
contaminated subsets) 

3 Results and discussion 
In this work, we present the recognition performance 

expressed as word error rates (WERs). Figure 3 shows the 
performance impact of the GA SS algorithm when clean 
speech is used for training. Two training scenarios are 
depicted in this figure: baseline clean training and SS clean 
training. We checked the performance changes originated 
by applying SS to the test set only and to both the test and 
train sets. Graph lines represent average WERs over all 
SNRs including clean speech (SNR=∞). As expected the 
baseline system leads to the worst performance with an 
average WER of 69.87% (presented here for comparative 
purposes). The average WER obtained when SS is applied 
to the testing set is 51.39% while the average WER is 
51.92% when SS is applied also to the training set. These 
results show that the application of the selected SS 
algorithm improves recognition performance on all noise 
types. However, there is no benefit applying the selected  
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speech enhancement technique to the clean speech used for 
training. Only the speech contaminated with airport and 
multi-talker babble noise exhibit better results, probably 
due to the speech-like characteristics of these noise types.  

 

 
Figure 2: WER performance when training used clean 

speech 

Figure 3 allows assessing the recognition impact of the 
combination of GA spectral subtraction with multi-
condition training. In this case we continue using the clean 
training setup as the baseline performance. Except for the 
case of the MC training scenario, all the signals that 
comprise the test set were enhanced with the GA-SS 
algorithm. As aforementioned, the baseline system that uses 
clean speech for training achieved an average WER of 
51.39%. In both MC training scenarios, performance 
behaves significantly better for all noise types. Note the 
slight WER increment experienced under acoustic 
conditions not included in the speech modeling (car, 
exhibition hall, street, and train station noise types). These 
results confirm the assumption that the system can perform 
well under unseen noisy environments.  

The graphs in Figure 3 also evidence that the 
application of the spectral subtraction algorithm leads to 
improved recognition results. When only multi-condition 
training is used, the averaged WER was 23.99% which 
implies an improvement of 43.85% over the baseline 
system. The use of the geometric-based approach to 
spectral subtraction reduces WER in 48.44% 
(WER=19.42%) with respect to the same baseline system. 
Finally, if we compare performance improvement with 
respect to the results achieved when spectral subtraction 
was applied to the test set, and the baseline system was 
trained with the original clean speech; the impact of MC 
trainings amounts to 27.41% and 32% respectively.  

 

 
Figure 3: WER performance under different training 

conditions. No feature post-processing technique was used. 

We also evaluated the effect of CMS as a feature post-
processing technique. Figure 4 presents three graphs that 
show the effect of combining spectral subtraction, and 
CMN in conjunction with MC training. The use of CMN 
and clean training yielded an average WER of 46.57%. This 
result is better compared to the 51.39 % obtained under the 
same conditions but when SS was applied instead of CMN. 
Again airport and multi-talker babble environments were 
better enhanced. Both MC training scenarios slightly 
reduced the number of errors. Only a WER improvement of 
0.93% was achieved after applying CMN in conjunction 
with GA SS and multicondition training.  

 

 
Figure 4: WER performance under different training 

conditions. CMN is applied as post-processing technique 

Finally, we decided to evaluate the WER improvement 
of spectral subtraction over the baseline on MC training 
setups at different SNRs. Our results confirm the initial 
assumption that the geometric-based approach to power 
spectral subtraction enhances speech recognition accuracy 
at low SNRs. Figure 5 illustrates that the performance 
improvements can be up to 15% for low SNRs signals 
while it is small for high SNRs.  

 

 
Figure 5: Averaged improvement on WER performance 

over all noise types at different SNRs.  

5 Conclusions 
We have presented experimental results that 

demonstrate the benefits of applying the geometric-based 
approach to power spectral subtraction in order to enhance 
the performance of speech recognition systems. Our results 
indicate that the combination of the selected power spectral 
subtraction algorithm, multi-condition training and feature 
enhancement with CMN increases the performance of the 
SRS under severe noisy conditions by up to 15%. The low 
computational cost of the selected algorithm makes it 
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attractive for mobile applications that use local speech 
recognition engines. 
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