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This paper presents the FTIM (Fast Topological IMaging) method which is based on an optimization method,
called the topological sensitivity. The existing methods that use the topological sensitivity have proved to enhance
the resolution, but they require extensive computation, as they are based on the numerical simulations of two
wave fields. A numerical code such as a time-domain finite-difference scheme is for example used. In the FTIM
method, the wave fields are obtained in the frequency domain by multiplying the preliminarily-obtained radiation
patterns of the transducers with the Fourier-transformed signals to be emitted. Experimental results obtained with
a transducer array are presented for an anisotropic solid, a fluid, and a medium mimicking biological tissues.

1 Introduction

The topological sensitivity methods developed by the math-
ematical community aim at optimizing a material for given
loads and boundary conditions. They have been applied to
numerical or experimental electromagnetic and ultrasonic imag-
ing methods [1, 2, 3, 4, 5, 6, 7], such as the TDTE (Time
Domain Topological Energy) [1, 2, 3]. The preliminar topo-
logical sensitivity analysis for the wave equation shows that
an optimal solution of the inverse problem is found by mul-
tiplying the solutions of two propagation problems: the di-
rect and the adjoint problems. For both, solid or fluid media,
these problems are defined by the propagation of two differ-
ent sets of waves in the same virtual medium, whose global
elastic properties are those of the inspected material. The
methods aims at minimizing the cost function defined as the
difference between the signals measured and those obtained
numerically with the modified medium. The mathematical
quantity that represents the location of the inhomogeneities
is the gradient of the cost function, the so-called topologi-
cal gradient, or derivative. Its expression is directly obtained
over the whole domain from the solutions u(�x, t) and v(�x, t) of
respectively the direct and adjoint problems. Its expression
depends on the physical problem studied and on the inhomo-
geneity kind to be detected. However, the integration over
the time- (or in the FTIM, frequency-) domain of the product
of u and v as in [2] is sufficient to localize all kinds of objects
at the first iteration of the optimization process. In the TDTE
method, the product of the squared values of the solutions is
used to enhance the contrast.
The second section presents the principles of the FTIM (Fast
Topological IMaging) method. The direct and adjoint prob-
lems are defined and solved in the frequency domain. A new
topological derivative is proposed. In the third section, the
method is applied to anisotropic media. Experimental results
obtained with a composite material sample are presented. In
the last section, the method is applied to fluids and exper-
imental results obtained with weakly echogenic inclusions
are presented.

2 The Fast Topological IMaging method

2.1 The direct and adjoint problems

First, the experimental data are obtainedwith a transducer
array. Then the direct and adjoint problems are defined as
the propagation of two different sets of wave emitted from
the virtual array in the virtual medium. Each wave of a set
correspond to the excitation signal transmitted to one of the
transducers of the virtual array. The set of excitation signals
for the direct problem is the set of waves emitted during the
experiments. The set of signals for the adjoint problem is the
time-reversed (or phase-conjugated in the frequency domain)
difference between the signals experimentally measured and

the solution of the direct problem restricted to the array loca-
tion. (Fig. 1)

Direct problem Adjoint problem

Virtual medium Virtual medium

Virtual array Virtual array

Experimental emission 

signals

Phase-conjugated expe-

rimental measurements

Solution of the direct 

problem U(x,y,f )

Solution of the adjoint-

problem V(x,y,f )
Computation of the 

image Ge(x,y)

Figure 1: Resolution of direct and adjoint problems. (The
signals are plotted in the time domain for clarity)

In this paper, the virtual domains are semi-infinite. The
solution of the direct problem restricted to the array is then
zero after the duration corresponding to the wave emission.
Therefore, the signals emitted in the virtual domain for the
resolution of the adjoint problem are the time-reversed mea-
sured signals which are set to zero during signal emission.
Note that the same virtual domain is used to solve both prob-
lems and that only the first iteration of the optimization pro-
cess is performed as the results obtained are already satisfac-
tory [1].

2.2 The frequency-domain solver

The solutions of the direct and the adjoint problems, re-
spectively U(�x, f ) and V(�x, f ), are obtained as the frequency-
domain product of the radiation patterns H j(�x, f ) of the trans-
ducers j and the Fourier-transformed signals to be emitted,
following

U(x, y, fk) =
∑

j

H j(x, y, fk)S j( fk) (1)

V(x, y, fk) =
∑

j

H j(x, y, fk)M∗j ( fk) (2)

where H j is the radiation pattern of transducer j in the vir-
tual domain of Fig. 1; fk is the kth element of the frequency
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vector; S j is the Fourier-transformed experimental excita-
tion signal transmitted to transducer j; M j is the Fourier-
transformed signal measured by transducer j and preliminar-
ily set to zero during emission. The * symbol corresponds to
the complex conjugation. For harmonic traveling waves, it is
also called the phase conjugation and can be interpreted as
the time-reversal operation.
All the physical information on how the waves propagate in
the medium is contained in the radiation patterns H j. For
given medium and array, they are obtained once and for all.
It means, that a new image only requires the computations
defined in Eq. (1) and Eq. (2). In the experimental applica-
tions presented in this paper, all images are 2D and so are U
and V .

2.3 The topological derivative definition

With the representation of G =
∫

u(x, y, t)v(x, y, T − t)dt,
where u and v are the time-domain solutions of the direct and
adjoint problems respectively and T the simulation duration,
the reflective objects can be located precisely [2]. Following
extended Parseval’s theorem, the gradient is defined in the
frequency domain by G(x, y) =

∫
R

U(x, y, f )V(x, y, f )d f =

2�(
∫
R+

U(x, y, f )V(x, y, f )d f ). The topological gradient can
be defined on a discrete bounded frequency domain [ f1... fN]
as�(G(x, y)), where G(x, y) is defined by:

G(x, y) =
N∑

k=1

U(x, y, fk)V(x, y, fk) (3)

In the FTIM method, we represent:

Ge(x, y) = |G(x, y)| (4)

which equals the norm of �(G) + iH(�(G)) (where H is
the Hilbert transform), i.e. the envelope of the topological
gradient�(G).

2.4 Comments on the method

The radiation patterns H j are obtained once and for all
for given medium and array. It means that no further numer-
ical simulation has to be performed to obtain a new image
from new experimental data. The radiation patterns can be
obtained with finite element modeling or from the integra-
tion of analytical results, as presented in sections 3 and 4 re-
spectively. In the TDTE method, a finite-difference scheme
is used to solve the propagation of the waves in the virtual
medium. It means that each new image require a new numer-
ical simulation, which may have a high computation cost.
The use of the frequency domain allow the size of the data
to be drastically reduced, as the frequency range of interest
is usually small compared to the sampling frequency fs. For
a given frequency range [ fmin fmax], the information to store
in the frequency domain is fs/(2 fmax − 2 fmin) times smaller
than in the time domain. In our examples, this ratio equals
between 7 and 10.
The use of pre-computed radiation pattern in the frequency-
domain dramatically reduces the computation cost. For the
experimental results of section 3 for example, the reduction
factor is about 60 (from 40 minutes to 40 seconds on the same
computer) without compromising the image quality. Further-
more, the simplicity of the numerical operations to be per-
formed make the FTIM method rather easy to embed in a

stand alone system.
The radiation pattern of the transducer j+1 is easily obtained
by translation of that of the transducer j when using a planar
transducer array. Thus, all radiation patterns are obtained
from only one of them.

3 Application to an anisotropic medium

A 2D finite element model of a semi-infinite composite
medium was implemented following [8]. The source is part
of the boundary of the domain and is as wide as the trans-
ducer of the array, in our case 0.8 mm. The triangular mesh
was so designed that there were at least 5 elements per wave-
length. The radiation pattern is obtained by interpolating
the results of the computation performed for every frequency
over a 50 μm regular spatial grid.
The medium experimentally inspected is a composite medium
sample presented in Fig. 2. 0.9 mm holes were drilled in the

32 transducer array

Composite material

Figure 2: The composite material sample investigated.

sample. The results were obtained with an Imasonic1 ultra-
sonic array and a Lecoeur2 OPEN system. The array was
composed of 32 0.8 mm wide transducers in contact with
coupling gel. The same experimental excitation signal was
applied to all transducers, so that a quasi-plane wave propa-
gated in the medium. The signal was a three-period 5 MHz
sinusoidal signal filtered with a Hanning window. The so-
lutions of the direct and adjoint problems are calculated fol-
lowing Eqs. (1, 2) on a 50 μm regular spatial grid. Variable
G2

e was computed following Eq. (4) and is compared to the
result of the TDTE method [2] in Fig. 3. The locations of the
objects are the same in both topological images and the im-
ages are very alike despite a calculation cost about 60 times
lower. The defaults that formed a line, 14 mm deep in the
material, correspond to the reflection of the wave at the bot-
tom of the sample, i.e. to its thickness. Lateral resolution in
TDTE and FTIM is much finer than with a B-scan despite
the fact that only one simple plane wave excitation was used.
Dominguez et al.[1] showed experimentally that a SAFT al-
gorithm was necessary to obtain a resolution similar to that
of a one-plane-wave topological image, and the results were
nosier.

4 Application to a fluid

In fluids, the radiation patterns were obtained by integrat-
ing the analytical green function of a two dimensional semi-
infinite medium [9]:

−
i
4

H0(kr) (5)

1www.imasonic.fr
2www.lecoeur-electronique.com
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Figure 3: (a) Envelope of the RF signals used as the original
experimental data for the calculation of: (b) the TDTE

image and (c) the FTIM image squared. The greyscale is
normalized over each image.

where H0 is the zero order cylindrical Hankel’s function, r
the distance to the source and k the wave number. Assuming
an a mm wide planar piston centered in (x j, 0), the pressure
field in the medium is given by:

H j(x, y, fk) =
∫ x j+a/2

x j−a/2
−

i
4

H0

(
2π fk

c
r

)
ds (6)

where r =
√

(x − s)2 + y2. The integration is performed with
a simple numerical scheme for all (x,y) locations of the grid
and for all frequency values of [ fmin fmax].
Two experimental configurations were tested. First, a 16 mm
gelatin cylinder was immersed in water, so that it appears

as a circle in the imaging plane. Second, a hole drilled in a
gelatin brick was filled with water. The images obtained with
a single plane wave illumination are presented in Fig. 4 and
Fig. 5 respectively.
As stated with the composite material, the FTIM greatly im-
proves the lateral resolution of the image. The shape of the
gelatin cylinder is precisely defined in Fig. 4 (a). The fact
that the shape is obtained is possible because gelatin is a
medium similar to water, so that the propagation in those
two media are similar. The shape of the water hole in the
gelatin medium is also very well defined in Fig. 5 (a). Fur-
thermore a crack in the gelatin is to be seen just under the
hole, on its left. The shape of this unwanted, however inter-
esting default appears clearly in the FTIM image, but not on
the B-scan. The image in Fig. 5 presents a background noise
corresponding to the positions of the small heterogeneities in
the gelatin medium. The little bows to be seen around the 20
μs ordinate on Fig. 5 (b) are the signature of two little air
bubbles. On the FTIM image of Fig. 5 (a), they appear as
two small and precisely defined points, not as large bows.

5 Conclusion

The efficiency of the fast topological imaging method was
experimentally checked for elastic waves in solid and fluid
media. Lateral resolution for plane-wave excitation is greatly
improved, so that the shape of weakly echogenic inclusions
can be precisely obtained with the method. The algorithm
proposed allows the computation cost to be reduced by about
60 in comparison with existing similar techniques. A real
time application of the method is thus made possible.
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Figure 4: The topological derivative Ge (a) obtained from RF signals whose envelopes are presented in (b). A single plane-wave
illumination was applied. The greyscale is normalized over the image.
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Figure 5: The topological derivative Ge (a) obtained from RF signals whose envelopes are presented in (b). A single plane-wave
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