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The convolution kernels of a Volterra series give a generalization of impulse responses to the case of weakly
nonlinear input-to-output systems. In acoustics, this formalism has yet been used to solve, e.g. the problem of a
nonlinear string excited by a force f(t) (considered as the input), spatially distributed by a time invariant function.
In this paper, we propose a similar generalization for the case of Green functions in order to tackle inputs that
depend on both the space and the time variables. The method to derive the ”Green-Volterra” kernels is described
and its application to the string is presented.

1 Introduction

The Volterra series can be used to compute dynamics
of weakly nonlinear problems. A previous work [1] has
presented the computation of Volterra kernels for a string
model with excitation force defined as φ(x) f (t). This
hypothesis is very restrictive for sound synthesis purposes
since the excitation force is not spatially constant when it
comes to a musician. A bow motion for instance, can be
decomposed in several forces on the string according to
several directions. These forces are dependent of how the
musician wants to play. That is the reason why we need
a method able to manage a much more general excitation
force for the system.

Green’s function is a good formalism to solve this kind
of issues. Its main drawback is that it is an application of
the superposition principle, and can only be used for linear
problems. This paper introduces a extension of the Volterra
series with Green’s function formalism. The main purpose
is to use Volterra series without the “spatially constant”
hypothesis on the excitation force.

The first part will introduce both methods: Green’s
function for a linear problem, and Volterra series for the
Kirchhoff string model. The second part will describe the
theory of Green-Volterra kernels. Finally, an application to
the same string model and a structure of simulation will be
presented.

2 Problem statement

2.1 Model under consideration

Consider the dimensionless nonlinear Kirchhoffmodel of
the transverse vibrations of a damped string [2] excited by
a force f distributed on Ω =]0, 1[ given by, for all (x, t) ∈
Ω × R+,

∂2t u(x, t)+2α∂tu(x, t)−
(
1 + ε

[ ∫ 1

0

(
∂xu(x, t)

)2
dx

])
∂2xu(x, t) = f (x, t),

(1)
with Dirichlet boundary conditions and zero initial
conditions

∀t > 0, u(0, t) = 0 and u(1, t) = 0, (2)

∀x ∈ Ω, u(x, 0) = 0 and ∂tu(x, 0) = 0. (3)

ε > 0 is the coefficient of the nonlinearity, which takes into
account the variation of tension. α > 0 accounts for the fluid
damping.

2.2 Linearized problem: Green’s function
solution

The linearized version of (1-3) obtained for ε = 0 is
a standard well-posed problem that has been extensively

studied. Using the Green’s function formalism, the solution
of this causal problem can be expressed as

u(x, t) =
∫
Ω×R+

g(x, τ, ξ) f (ξ, t − τ) dξ dτ (4)

where the Green’s kernel g is the solution of (1-3) with ε = 0,
for f (x, t) = δ(x−ξ)δ(t). In the Laplace domain (with respect
to the time variable), the linear problem is ∀(x, s) ∈ Ω×C+−2α

Γ
2(s)U(x, s) − ∂2xU(x, s) = F(x, s), (5)

with
Γ(s) =

√
s2 + 2αs, (6)

and the following boundary conditions

U(x = 0, s) = U(x = 1, s) = 0 (7)

where, for all x ∈ R, C+σ =
{
s ∈ C | �e(s) > σ

}
and z �→

√
z denotes the analytic continuation over C+0 of the positive

square root on R+.
This linear boundary problem solves into for all (x, s) ∈

Ω × C+−2α and ξ ∈ Ω,

U(x, s) =
∫
Ω

G(x, s, ξ) F(ξ, s)dξ, (8)

G(x, s, ξ) =
cosh

(
(1 + x + ξ)Γ(s)

)
−cosh

(
(1 − |x − ξ|)Γ(s)

)
2Γ(s) sinh

(
Γ(s)

) .(9)

The solution can also be decomposed on the
eigenfunctions {ek}k∈N∗ with ek(x) =

√
2 sin(kπx), which

define an orthonormal (Hilbert) basis of L2(Ω). If α < π, the
characteristic equation of the k-th mode is Γ(s)2 + k2π2 = 0.
It admits a pair of complex conjugate roots (λk, λk) with
λk = −α + i

√
ωk and ωk =

√
k2π2 − α2 > 0. The modal

decomposition yields

u(x, t) =

+∞∑
k=1

[gk  fk](t)ek(x), (10)

U(x, s) =

+∞∑
k=1

Gk(s)Fk(s)ek(x), (11)

with gk(t) = 1t>0(t)e−αt, Gk(s) = 1
s2+2αs+k2π2

, fk(t) = fk(t) =
〈 f (t, ·), ek(·)〉L2(Ω) and Fk(s) = 〈F(s, ·), ek(·)〉L2(Ω) denote the
projections of f and F on eigenfunction ek.

For sound synthesis purposes, real-time simulations
are often based on a truncated version of this modal
decomposition. The block-diagram corresponding to
(10-11) truncated at order K is displayed in figure 1. For
simulations, digital versions of the second order auto-
regressive filters associated with the transfer function Gk(s)
are implemented.
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f (x, t)

〈·, e1〉

〈·, ek〉

〈·, eK〉

f1(t)

fk(t)

fK(t)

G1

Gk

GK

u1(t)

uk(t)

uK(t)

e1(x)

ek(x)

eK(x)

u(x, t)

Figure 1: Block-diagram of the simulation of the linearized
version of (1-3) with K modes.

2.3 Nonlinear problem for a class of excitations:
Volterra series solution

The problem (1-3) has been solved in [1] using Volterra
series expansions, in the case where f (x, t) = φ(x) f (t). The
main steps of the method and the results are recalled below.

2.3.1 Volterra kernels

The definitions and results used in this paper are gathered
from [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. The system
defined by Eq. (1) is space dependent, therefore the Volterra
series has space parameterized kernels h(x)

n . The output u of
the system, represented by stationary Volterra kernels h(x)

n is
defined by:

u(x, t) =
+∞∑
n=1

∫
Rn

h(x)
n (τ1, ..., τn)u(t − τ1)...u(t − τn)dτ1...dτn

(12)
where (τ1, ..., τn) =∈ Rn are the convolution variables for a n-
order output and u the input of the system. If T is a Laplace
or a Fourier transform, we will write H(x)

n = T (h(x)
n ).

The use of stationary Volterra kernels implies to write the
excitation force

f (x, t) = φ(x)g(t) (13)

which gives the following results.

2.3.2 Equations of Volterra kernels

2.

{h(x)
n } ∂2

∂t2 + 2α ∂
∂t −

∂2

∂x2

∂
∂x −ε

∫ 1

0
.dx

∂2

∂x2−φ(x)

f (t)

u(x, t) w1(x, t)

w2(x, t)

∂2u
∂x2 (x, t) = w3(x, t)

−φ(x) f (t) = w4(x, t)

0

(V1)

(V2)

(V3)(V4)

Figure 2: Equivalent block-diagrams representing Eq. (1).

The Volterra kernels will be determined using the
canceling system (cf. figure 2) which represents Eq. (1) and
the interconnection laws. For more detail, the reader can
refer to [1], model (M1).

(Γ(s1 + . . . + sn))
2H(x)

n (s1:n) − ∂2xH(x)
n (s1:n) = E(x)

n (s1:n) (14)

where s1:n = (s1, . . . , sn), with the following boundary
conditions

∀(s1:n) ∈ {0; 1}(C+0 )n, H(x=0)
n (s1:n) = H(x=1)

n (s1:n) = 0 (15)

and

E(x)
1 (s1) = φ(x) (16)

E(x)
n (s1:n) = ε

∑
p+q+r=n

∫ 1

0

[
∂xH(x)

p (s1:p)∂xH(x)
q (sp+1:p+q)

]
dx

∂2xH(x)
r (sp+q+1:r) (17)

Eqs. (14) to (17) are similar to system defined in (5) to (7)
where U(x, s) �→ H(x)

n (s1:n), F(x, s) �→ E(x)
n (s1:n) and Γ(s) �→

Γ(s1+ . . .+ sn). It is the same boundary problem (with respect
to x), as a consequence (similarly to Eq. (8)) ∀(x, s1:n) ∈
Ω × (C+0 )n:

H(x)
n (s1:n) =

∫
Ω

G(x, s1 + . . . + sn, ξ)E
(ξ)
n (s1:n)dξ (18)

Remark 1 For n = 1, the Volterra kernel H1 is a convolution
between the Green function G (cf. Eq. (9)) and E1 = φ the
spatial force distribution. Therefore H1 gives the solution of
the linearized problem (ε = 0) since it is the Green function
of linearized version of Eq. (1).

2.3.3 Modal projection

For all n ∈ N, Eqs. (14) to (17) is similar to the problem
defined in Eqs. (5) to (7), it can be therefore decomposed on
a modal basis with the following definition valid in the set
L2(Ω)

H(x)
n (s1:n) =

∑
k∈N

H[k]
n (s1:n)ek(x) (19)

with ek =
√

2 sin(kπx).
The decomposition of Eqs. (14- 17) on the eigenfunctions

{ek}k∈N with ek =
√

2 sin(kπx) defines the modal projection
of the Volterra kernels

H[k]
n (s1:n) = G[k](s1 + . . . + sn)E

[k]
n (s1:n). (20)

Eq. (20) is identical to Eq. (11) where Gk �→ G[k], ek �→
ek and Fk �→ E[k]

n which leads to

E[k]
1 (s1) = < φ, ek >= φk (21)

E[k]
n (s1:n) = −εk2π4

∑
p+q+r=n

⎡⎢⎢⎢⎢⎢⎣
∑
l∈N

H[l]
p (s1:p)H

[l]
q (sp+1:p+q)

⎤⎥⎥⎥⎥⎥⎦
H[k]

r (sp+q+1:r) (22)

As detailed in [1], this system can be rewritten using
trees. The interested reader can refer to the mentioned article.

2.3.4 Numerical simulation in the time domain

Using Eq. (20), kernels can be identified as structures
composed of linear systems, sums and products (cf. [1] for
details).

Figure 3 shows the restriction on excitation forces applied
in previous works. This force is defined as a product between
a time and a space function: f (x, t) = φ(x) f (t). This imposes
to know φ(x).

2.4 Nonlinear problem under consideration:
what formalism for a general solution?

The generalization of an excitation force f (x, t), is a
necessity to deal with realistic physical problems. That is the
point of the next section that will define the Green-Volterra
kernels. Then, the method will be applied at the same string
model introduced in this section.
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2. 2. 2.

f (t)

φ1

φk

φK

G[1] G[1]

G[k]G[k]

G[K]G[K]

u[1]
1 (t)

u[k]
1 (t)

u[K]
1 (t)

k K

w(t) =
K∑

l=1

l2
(
u[l]

1 (t)
)2

−επ4

−εk2π4

−εK2π4

u[1]
3 (t)

u[k]
3 (t)

u[K]
3 (t)

e1(x)

ek(x)

eK(x)

u3(x,t)

(linear contribution, n = 1)

Figure 3: Block-diagram of an o(ε)-simulation of Eq. (1)
with K modes: the dashed arrows isolate the linear

dynamics (n=1) of each mode; the shaded central part
isolates the o(ε)-dynamics of a mode k; the shaded bottom

part isolates the dynamics of the integral term in (M1)
(gains 1, k and K before the square operators are due to
∂x); the shaded left part corresponds to simple gains,

controlled by the spatial distribution of the excitation force.

3 Introducing Green-Volterra series

In this section, we propose to generalize the Volterra
series formalism presented in [1], in order to tackle the
nonlinear problem (1-3).

3.1 Definitions

Definition 1 (Green-Volterra series) A system with
input f : (x, t) ∈ Ω × R �→ f (x, t) and output
u : (x, t) ∈ Ω × R �→ u(x, t) is described by a Green-
Volterra series of kernels {rn}n∈N∗ , if the output is given
by

u(x, t) =

+∞∑
n=1

∫
(Ω×R)n

rn(x, t, ξ1:n, τ1:n)

× f (ξ1 , τ1) . . . f (ξn , τn) dξ1:ndτ1:n (23)

{rn}
f (x, t) u(x, t)

Figure 4: System represented by its Green-Volterra kernels

For causal time-invariant systems, definition 1 can be
simplified and transfer kernels can be introduced in the
Laplace domain, as for standard Volterra series. This leads
to the following definitions.

Definition 2 (Time-invariant system and transfer kernels)
If the system defined by (23) is invariant under time
translations, then for all n ∈ N∗ and (x, t, ξ1 , τ1 , . . . , ξn, τn) ∈
(Ω × R)1+n,

rn(x, t, ξ1 , τ1 , . . . , ξn, τn) = rn(x, 0, ξ1 , τ1−t, . . . , ξn, τn−t), (24)

and (23) takes the following form

u(x, t) =

+∞∑
n=1

∫
(Ω×R)n

rn(x, ξ1:n, τ1:n)

× f (ξ1, t − τ1) . . . f (ξn, t − τn) dξ1ndτ1:n,(25)

where rn(x, ξ1 , τ1 , . . . , ξn, τn) = rn(x, 0, ξ1 , τ1 , . . . , ξn, τn). In
this case, for all (ξ1 , . . . , ξn), the Green-Volterra transfer
kernel Rn is defined by the multi-variate Laplace transform

Rn(x, ξ:n1, s1:n) =
∫
Rn

rn(x, ξ1:n, τ1:n) e−(s1 τ1+...+snτn) dτ1:n

(26)
for all (s1 , . . . , sn) ∈ Cn such that the integral is absolutely
convergent.

Remark 2 (Causal system) If the system is causal, then
rn(x, t, ξ1:n, τ1:n) is zero as soon as τi (1 ≤ i ≤ n) is larger
than t. Then, Rn can be replaced by ] − ∞, t]n in (23) and by
R

n
+

in (25-26).

Remark 3 (Link with the Green’s function formalism)
From remark 2, if a causal system is linear (rn = 0 for
n ≥ 2), then (25) coincides with (4) where the first order
kernel r1 interprets as the standard Green’s kernel g.

3.2 Interconnection laws

The interconnections laws of standard Volterra series can
be generalized to the case of Green-Volterra series.

Consider two systems defined by the Green-Volterra
series

{
pn

}
n∈N∗

and
{
qn

}
n∈N∗

, respectively. Deriving the
outputs and the Green-Volterra kernels of the systems
described in figures 5a-c leads to the following results in
the Laplace domain: For a sum of outputs Rn(x, ξ1:n, s1:n) =

{pn}

{qn}

f (x, t) u(x, t)

(a)

{pn}

{qn}

f (x, t) u(x, t)

(b)

{pn}
q1

(linear)
f (x, t) u(x, t)

(c)

Figure 5: Sum (a), product (b), and cascade (c) of two
“ Green-Volterra systems”.

Pn(x, ξ1:n, s1:n) + Qn(x, ξ1:n, s1:n), for a product of outputs
Rn(x, ξ1:n, s1:n) =

∑n−1
m=1Pm(x, ξ1:m, s1:m)×Qn−m(x, ξm+1:n, sm+1:n)

and for a cascade with a linear system Rn(x, ξ1:n, s1:n) =∫
Ω

Q1(x, ζ, s1 + . . . + sn)Pn(ζ, ξ1:n, s1:n)dζ.

4 Closed-form solutions of the Green-
Volterra kernels of the string

4.1 Problem

Let remind, the adimensionned Kirchhoff string model

∂2t u(x, t) + 2α∂tu(x, t) =

(
1 + ε

[∫ 1

0
(∂xu(x, t))2dx

])
∂2xu(x, t)

+ f (x, t) (27)

where u(x, t) is the transverse displacement of the string
and f (x, t) a distributed excitation force. The boundary
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2.

{hn} ∂2

∂t2 + 2α ∂
∂t −

∂2

∂x2

∂
∂x −ε

∫ 1

0
.dx

∂2

∂x2

f (x, t)

u(x, t) w1(x, t)

w2(x, t)

∂2u
∂x2 (x, t) = w3(x, t)

0

(V1)

(V2)

(V3)

Figure 6: Equivalent block-diagrams representing Eq. (27).

conditions are Dirichlet homogeneous (∀t > 0, u(0, t) =
u(1, t) = 0) and the string is at rest for t ≤ 0 (u(x, t) = 0).

Let be Rn(x, ξ1:n, s1:n) for n ∈ N, the Green-Volterra
kernels of the system. Using canceling system Rn is defined
by

Γ
2(s1+. . .+sn)Rn(x, ξ1:n, s1:n)−∂2xRn(x, ξ1:n, s1:n) = En(x, ξ1:n, s1:n)

(28)
with the following boundary conditions ∀(s1:n) ∈ {0; 1}(C+0 )n

Rn(x = 0, ξ1:n, s1:n) = Rn(x = 1, ξ1:n, s1:n) = 0 (29)

and

E1(x, ξ, s) = δ(x − ξ)1(s) (30)

En(x, ξ1:n, s1:n) = ε

∫
Ω

∑
p+q+r=n

∂xHp(x, ξ1:p, s1:p)

∂xHq(x, ξp+1:p+q, sp+1:p+q)dx

∂2xHr(x, ξp+q+1:n, sp+q+1:n) (31)

Problem (28) to (31) is similar to (5) in which U(x, s) �→
Rn(x, ξ1:n, s1:n), F(x, s) �→ En(x, ξ1:n, s1:n) and Γ(s) �→ Γ(s1 +

. . . + sn).
The solution is (as for problem (5)) defined in Eqs. (8)

and (9).
For n = 1,

R1(x, ξ, s) = G(x, ξ, s) (32)

defining the same problem as in section 2.2.
For n ≥ 2

Rn(x, ξ1:n, s1:n) =
∫
Ω

G(x, y, s1 + . . . + sn) En(y, ξ1:n, s1:n)dy

(33)
defining the same problem as in section 2.3.

This is the solution of the linear Eq. (5). The Green
function of the string displacement is G(x, y, s) which is also
the first order Volterra kernel. Let now compute higher order
Volterra kernels.

5 Modal decomposition and realization

2.
{h[k]

n } l[k]1 (t)

lπ
∑

l∈N ε

−k2π2

f (x, t)

u[k](t) w[k]
1 (t)

w[k]
2 (t)

−k2π2u[k](t) = w[k]
3 (t)

0

(V1)

(V2)

(V3)

Figure 7: Equivalent block-diagrams representing Eq. (27).

For all n ∈ N, Eqs. (28) to (31) are similar to the
problem defined in Eqs. (5) to (7), it can be therefore

decomposed on a modal basis with the following definition
valid in the set L2(Ω)

Rn(x, ξ1:n, s1:n) =
∑
k∈N

R[k]
n (ξ1:n, s1:n)ek(x) (34)

and
Rn(x, ξ1:n, s1:n) =

∑
(k,l)∈(N)2

R[k][l]
n (s1:n)el(x) (35)

with ek =
√

2 sin(kπx). Using the orthogonality of the
modes, R[k][l]

n = 0 if k � l, we will therefore define
R[k]

n = R[k][k]
n .

Green-Volterra kernels R[k]
n are defined by

(s2
+ 2αs)R[k]

n (s1:n) + k2π2R[k]
n (s1:n) = E[k]

n (s1:n) (36)

with

E[k]
1 (s) = 1(s) (37)

E[k]
n (s1:n) = −εk2π4

∑
p+q+r=n

∑
l∈N

l2R[l]
p (s1:p)

R[l]
q (sp+1:p+q)R

[k]
r (sp+q+1:n) (38)

Problem (36) to (38) is solved by Eq. (11) in which
U(x, s) �→ R[k]

n (s1:n), Fk(s) �→ E[k]
n (s1:n) and Γ(s) �→ Γ(s1 +

. . . + sn).
For n = 1

R[k]
1 (s) = Gk(s) (39)

defining the same problem as in section 2.2.
For n ≥ 2

Rn(s1:n) = Gk(s1 + . . . + sn)E
[k]
n (s1:n) (40)

defining the same problem as in section 2.3.
Using previous work (cf. section 2.3.4), the Green-

Volterra kernels modal projections can be identified to the
same structure presented in figure 3. Indeed, for n = 1,
the Green-Volterra kernel is the Green function (cf. Eqs.
(10)- (11)), and for n ≥ 2, the kernels consists in sums and
products of the output of this already known Green function.

Therefore, the simulation will be performed using the
structure presented in figure 8. The only difference with the
previous work, is the input of the system, where the force
f (x, t) is decomposed on the modal basis using a scalar
product for each mode.

6 Realizations and discussion

Figure 9 represent the time response of the string at an
observation point x = 0.57, for an excitation force f (x, t) =
(|x−x0| < l) cos(2π(x+t))∗ fmax∗t/T f orce where x = 0.35, fmax

is the maximum amplitude of the mass force, T f orce = 0.01s
and l = 0.04.

The sampling frequency is fs = 44100 Hz and the number
of modes is K = 20. The same conclusions can be made in
comparison with [1], i.e. the approximation at a given order
of nonlinearity (here N = 5) is valid until a maximum of
force amplitude, where the nonlinear response have the same
magnitude than the linear one. Without a calculation of the
convergence radius, this is a good observation, to define a
valid range of excitation force.

Figure 10 presents the main advantage of Green-Volterra
kernels, in comparison with previous works, knowing, a
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BASE

f (x, t)

〈·, e1〉

〈·, ek〉

〈·, eK〉

f1(t)

fk(t)

fK(t)

G1 G1

GkGk

GKGK

u[1]
1 (t)

u[k]
1 (t)

u[K]
1 (t)

k K

w(t) =
K∑

l=1

l2
(
u[l]

1 (t)
)2

−επ4

−εk2π4

−εK2π4

u[1]
3 (t)

u[k]
3 (t)

u[K]
3 (t)

e1(x)

ek(x)

eK(x)

ua(x,t)

(linear contribution, n = 1)

Figure 8: Block-diagram of an o(ε)-simulation of Eq. (1)
based on Green-Volterra kernels with K modes: the

excitation force f (x, t) is completely unknown to the system
and is decomposed on the modal basis using a scalar

product.

Figure 9: Results of the figure 8 simulation for
Fmax = 500 N/Kg and Fmax = 5000 N/Kg. From top to
bottom: linear, third order and fifth order responses, and

their sum.

simulation with an input f (x, t) allowing the force to vary in
time and space during the simulation. In this case, excitation
force is modulated by cos(2πxt), thus moving the spatial
position of the force with time.

Figure 10: String deformed by the space moving force
f (x, t) at time t0 and t1 > t0.

7 Conclusion

This paper has shown the calculation of Green-Volterra
kernels for the Kirchhoff string model. This formalism
allows to use the Green’s function properties in the dynamics
of a weakly nonlinear problem. The main result of the
computation is the space variation of the excitation force
applied to the string.

This generalization of an excitation force f (x, t), is a
requirement to work on another kind of problems. Contact
problems for deformable solids are a very good example of
the need of a variable space distribution of the force. This
paper is a possible answer for such issues.
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indéterminées non commutatives. Bulletin de la S.M.F.,
109:3–40, 1981.

[8] M. Fliess, M. Lamnabhi, and F. Lamnabhi-Lagarrigue.
An algebraic approach to nonlinear functional
expansions. IEEE Trans. Circuits Syst., 30(8):554–
570, 1983.

[9] S. Boyd, L. O. Chua, and C. A. Desoer. Analytical
foundations of Volterra series. IMA Journal of
Mathematical Control and Information, 1:243–282,
1984.

[10] S. P. Boyd. Volterra series: Engineering fundamentals.
PhD thesis, Harvard University, 1985.

[11] P. E. Crouch and P. C. Collingwood. The observation
space and realizations of finite Volterra series. SIAM
journal on control and optimization, 25(2):316–333,
1987.

[12] M. Schetzen. The Volterra and Wiener theories of
nonlinear systems. Wiley-Interscience, 1989.

[13] Françoise Lamnabhi-Lagarrigue. Analyse des Systčmes
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