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As for multi-source radiators, many studies have shown that the baffle effect phenomenon exists in cMUTs 
arrays too. This paper is a deep theoretical investigation of such phenomena which involve the apparition of cut-
off frequencies in the radiated pressure. The linear array of cMUTs is modeled like a linear system. The input 
electrical quantities (voltage applied to each element of the array) are linked to the output acoustic quantities 
(pressure emitted by each element) with a global . The eigenvalues decomposition of the 
transfer matrix is used to discuss and to explain the origins of the baffle effect phenomenon.  

1 Introduction 
CMUTs are a very promising alternative to 

piezoelectricity in echographic imaging probes. Many 
authors have modeled cMUTs arrays but only few works 
have been dedicated to the simulation of devices working in 
real configuration, i.e. where each element is made of a 
finite number of cMUTs columns. The previous studies [1] 
and [2], pointed out that in such conditions, interactions 
between cMUTs could cause some strong cut-off 
frequencies in the useful frequency bandwidth, leading to 
undesirable oscillations at the end of the impulse response. 
This paper is a deep investigation of such interactions that 
we called after baffle effect. 

Assuming that all the cMUTs cells have the same 
behavior in a column, a 2D matrix representation of the 
cMUTs array is developed. The cMUTs array is thus 
described as a linear system with multiple input/output 
ports that respectively correspond to each column of 
cMUTs in the array. Input/output ports are linked to each 
other through an acoustic admittance matrix that is 
sufficient to well-describe the behavior of a cMUTs array. 
We propose in this paper to use a modal analysis, i.e. 
eigenvectors decomposition, to understand origins of this 
baffle effect. 

2 CMUTs array modeling 
Multiple strategies can be used to simulate cMUTs array 

behavior. In this approach, each membrane is considered as 
a linear system and, in a same column, all the cells are 
assumed to be identical. cMUTs array modeling is 
performed in two steps. The first consists in calculating the 
response of one cMUT with 1D periodic boundary 
conditions, i.e. the response of one column of cMUTs. In 
the second step, the complete array is modeled by adding 
neighboring columns to the single column and by taking 
into account acoustic mutual interactions between each 
other. 

2.1 Matrix modeling 
As for the analysis presented in [3], cMUTs array can 

be modeled with a 2D matrix representation (Figure 1). 
This electroacoustic representation allows reducing the 
number of degrees of freedom to the number of columns. 

 
Figure 1: 2D representation of cMUTs array 

 

 
Figure 2: Equivalent electro-acoustic schema of one cMUT among 
a column of cMUTs 

For the electrical part, the input/output quantities are the 
current Ii and the potential i applied to each column of 
cMUTs and, for the acoustic part, variables are the mean 
radiated pressure Pri and the mean velocity displacement on 
the membrane surface vi. The mechanical and electrostatic 
cross-talks with the substrate are not considered here. The 
first step of the model consists in considering one column 
of cMUTs only, without taking into account the others. 
Relationships between [Pri, vi] and [Ii , i] are established 
through an equivalent electro-acoustic model (Figure 2) 
computed with the same strategy presented in [4], where 
1D periodic boundary conditions are applied to the cMUTs. 
Thus, for each column, it can be written: 

i i a ms iPr Pe Z Z v   
with i=[1,...,N]  (1) 

Pei is the mean electrostatic pressure, Zms is the 
mechanical impedance of one membrane and Za is the self 
radiation impedance of one cMUT loaded with 1D periodic 
boundary conditions. N is the number of column per 
element. 

To compute the electroacoustic response of the array, all 
columns have to be considered simultaneously and acoustic 
mutual interactions between each other must also be 
integrated in the model. For that, the radiation impedance of 
each column of cMUTs is decomposed as the sum of the 
self radiation impedance and all mutual radiation 
impedances Zij

mut. Zij
mut is the mutual radiation impedance 

between column i and column j. All impedances are 
grouped together in one matrix called the radiation matrix 
[G]. [G] contains the self radiation impedance Za on the 
diagonal and out of the diagonal, the mutual impedance 
Zij

mut: 

; for i = j
; for i j

a
i j ij

mut

Z
G

Z
 (2) 

To determine the mutual impedance terms, it is assumed 
that the cMUTs vibrates like piston. In a similar way, a 
matrix global stiffness [Kms] can be constructed where the 
mechanical impedance terms appear. Here, it contains only 
the mechanical impedance Zms on the diagonal because 
cross-talks with the substrate are not considered. 

; for i = j
0 ; for i j

ms
ms

Z
K  (3) 

The computation of the pressure emitted by one element 
of the array, made with N columns of cMUTs, leads to 
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solve a set of N linear equations where the input datum is 
the vector of the electrostatic pressures applied to each 
column [Pe], and the output one is the vector of average 
velocities of each columns [v]: 

1 11 1 1

1

1

... ... ... ; with
N

N N NN N

ms

v Y Y Pe

v Y Y Pe

Y K G

(4) 

Electro-acoustic properties of one element of the array 
are totally described by its admittance matrix [Y]. The 
electrical admittance Yarray of one element is deduced from 
[Y]. It is easily to obtain its expression after simple 
manipulations: 

0
1 1

²
N N

array p cmut cmut ij
j i

Y jC jNN C N Y (5) 

Ncmut is the number of cMUTs per column, C0 is the 
static capacitance of one cMUT, Cp is the parasitic 
capacitance of the cMUTs array, and  is the transformer 
ratio. 

 

2.2 Experimental confrontation 
In order to validate the model, the simulated and the 

experimental response of one element are compared. The 
studied element is composed of 4 columns and 57 lines of 
square-shaped cells. Each cell are made with a silicon 
nitride membrane of 25x25µm² partially covered (50% 
arena) with an aluminum electrode. Cavities were sealed 
under vacuum; so there is no squeeze film effect. The 
thickness and the properties of each layer are listed in Table 
1. The pitches are 15µm between two columns and 11µm 
between two lines. 

Table 1: Dimensions of cMUTs membranes and physical 
properties of material used for simulation 

Layer Gap 
(Vacuum) 

Membrane 
(SiN) 

Electrode 
(Al) 

Thickness (nm) 200 450 350 
Width (µm) n/a 25 18 

modulus (GPa) n/a 220 68 

Poisson ratio n/a 0.25 0.35 
Density (kg.m-3) n/a 3300 2700 
Relative 
permittivity n/a 7.5  

 
First, the element has been characterized following the 

method based on electrical impedance measurement in air, 
presented in [6]. The measured fundamental resonance 
frequency, the collapse voltage, and the parasitic 
capacitance are respectively 10.8 MHz, 60 V, and 4.8 pF. 
The set of electrical impedance curves for different bias 
voltages was used to fit input data of the model. The 
electrical reactance obtained for a bias voltage of 30V and 
the electromechanical coupling factor are compared to the 
model in Figure 3. Despite a good agreement until 50V, a 
strong deviation is observed around the collapse voltage. 
This discrepancy is due to the inhomogeneity between cells. 

 
Figure 3: Theoretical and experimental real part of the electrical 
impedance for a bias voltage of 30V (left part) and theoretical and 
experimental coupling coefficient (right part) 

With the set of parameters determined from 
measurements in air, the theoretical impedance of cMUTs 
loaded by oil was computed and compared to the 
experimental data (Figure 4). A good agreement is 
observed. But the main feature on this result is the 3.8 MHz 
cut-off frequency which corresponds to the previously 
discussed baffle effect. 

 
Figure 4: Theoretical (continuous curves) and experimental 
(dashed curves) real part of the electrical impedance for three bias 
voltages 

3 Modal decomposition of the 
pressure field 

The approach presented here is an original investigation 
of the baffle effect based on the normal mode theory. 

 

3.1 Modal decomposition of the 
admittance matrix 

The origin of baffle effect can be explained with 
properties of the acoustic admittance matrix [Y]. The 
objective of this study consists in identifying the normal 
radiation mode of the cMUTs array, by mean of the 
eigenvalue decomposition of the matrix [Y]. Since [Y] is a 
square matrix, thanks to the matrix theory [7], we can 
rewrite [Y] under the form: 

1e eY V V  (6) 

Where [ ] is the diagonal matrix of the eigenvalues of 
[Y] and [Ve] is the orthonormal matrix composed by the 
corresponding eigenvectors (arranged in columns).  

The equation (4) becomes: 
1e ev V V Pe  (7) 

[ ] are the projection coefficients of the electrostatic 
pressure vector onto the eigenvectors base: 
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1eV Pe  (8) 

So equation (7) becomes: 

1

N
e

i i i
i

v V  (9) 

Thus, the mean velocity of each column, [v], is clearly 
identified as a linear combination of all the normal radiation 
modes of the cMUTs array. 

Since the stiffness matrix [Kms] is diagonal, the 
eigenvectors of the matrix [Y] and those of the matrix [G] 
are identical and independent of the membrane mechanical 
impedance. More, the eigenvalues of admittance i can be 
redefined using some classical properties [7] of the square 
matrix as: 

1
i

i msZ
(10) 

i are the eigenvalues of the acoustic radiation matrix 
[G]. This relation expresses, for each mode, the physical 
coupling between membrane elasticity and the mass of 
fluid. 

 

3.2 Illustrative example 
In this subsection, the modal decomposition of the 

transfer matrix [Y] is applied for the experimental case 
previously described in the section 2.2. Since each element 
is composed of 4 columns, [Y] has 4 eigenvectors and 4 
eigenvalues. Each normal mode is a specific combination of 
four elementary radiating acoustic line sources. The first 
mode is the case where the four columns are vibrating in 
phase, it will be noted (++++). The second is an asymmetric 
one and is a combination of two lines vibrating in phase 
while the two others are in opposition: (++--). The third is 
symmetric, the two outer lines are in phase while the 
centers lines are in opposition: (+--+). Finally the last one is 
(+-+-). Moreover, all components of the electrostatic 
pressure vector [Pe] are fixed to 1 then, only symmetrical 
modes are excited. Consequently, the pressure radiated by 
one element composed of 4 columns of cMUTs is a linear 
combination of the mode 1 and the mode 3. 

 Eigenvector Directivity 

Mode 
1 

 

 

Mode 
3 

 

 

Figure 5: Eigenvectors and directivities for the modes 1 and 3 

In Figure 5, the eigenvectors components are 
represented versus the frequency for the mode 1 and the 
mode 3. The main features of theses curves are the 
apparition of cut-off frequencies. The first, for fcx=c/dx 
37.5MHz, corresponds to the case where the acoustic 
wavelength is equal to the horizontal periodic pitch dx. The 
second for fcy=c/dy is the case where one 
acoustic wavelength separates two cMUTs along the 
elevation. This second frequency corresponds to the 
radiation of the second spatial harmonic of the 1D periodic 
array of cMUTs. Under this limit, each column of cMUTs 
radiates like a line source. 

The directivity pattern of mode 1 and mode 3 at 5 MHz, 
is showed on the right of the Figure 5. As expected, the 
main radiation axis of the mode 1 is perpendicular to the 
plane of the transducer while the mode 3 radiates a part of 
its energy in the plane of the transducer. 

As it was previously demonstrated with the equation 
(10), eigenvalues allow observing the membrane 
mechanical impact in addition with cMUTs layout. For the 
two modes, minima are clearly observed at fm=26.7MHz 
and fcy=41.7MHz (Figure 6). The first minimum is a cut-off 
frequency caused by the second resonance mode of 
membranes (this mode is anti-symmetric and not 
electrically coupled). The second minimum is due to the 
periodicity along the elevation From the analyses of the 
mode 3, a maximum is clearly observable at f=3.8MHz. 
Such  and 
produces cut-offs observed in the response of the array (see 
Figure 4).The maximum can be interpreted as a local mass-
spring resonance where the energy is trapped at the surface 
of the transducer. The evolution of the mode 1 is more 
classical since the well-known large bandwidth response of 
cMUTs transducer can be identified. This mode defines the 
central frequency and the bandwidth of the transducer. It is 
interesting to note that mode 1 is mainly dominant except 
when mode 3 is locally resonating. 

 
Figure 6: Eigenvalues versus frequency for modes 1 and 3 

All the properties of mode 1 and mode 3 will impact the 
shape of the pressure spectrum (Figure 7). The central 
frequency and bandwidth are those defined by the mode 1. 
At the resonance frequency of the mode 3, local 
disturbances appear in the pressure spectrum and in the 
directivity pattern too (Figure 8). The cut-off frequency is 
strongest around an angle of ninety degrees. This 
phenomenon is explained by the fact that the mode 3 
radiates energy in the plane of the transducer. 
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Figure 7: Pressure radiated by the cMUTs array element. This 
simulation is achieved in water at 60mm.The pressure level 
reference is 155Pa/V. 

 
Figure 8: Diffraction field pattern of the cMUTs array element. 
This simulation is achieved in water at 60mm.The pressure level 
reference is 155Pa/V. 

4 Parametric study 
In this section, a parametric study is conducted in order 

to explore separately the impact of the mechanical 
impedance, the pitch between columns, and the number of 
columns. The cMUTs device is the same than the one 
presented in section 2.2. 

 

4.1 Influence of the mechanical 
impedance 

In order to change the mechanical impedance, two 
membranes parameters can be modified: the thickness or 
the size. We have done the choice to change only the 
thickness without modifying the layout. The pressure field 
spectrum at 60 mm from the transducer is reported in 
Figure 9 for mode 1 and in Figure 10 for the mode 3. For all 
simulations, since the layout was not changed, the cut-off 
frequency due to periodicity stays at about 41.7 MHz. On 
the mode 1, the increase of the mechanical impedance shifts 
the central frequency and the bandwidth toward a higher 
frequency. The impact of the mechanical impedance on the 
local resonance of the mode 3 is smaller: a slow shift is also 
observable. So, the impact of the baffle effect on the 
cMUTs response is reduced when the mechanical 
impedance is increased, since it appears in the low 
frequency domain of the transducer bandwidth. This is 
probably the reason for which the baffle effect was poorly 
discussed up today. In the literature, the majority of 
experimental devices are made with a large thickness 
membrane, typically 1µm. An optimal value for the 
thickness is pointed out for the mode 1: 550 nm. With 550 
nm, the shape of the frequency response is the flattest. 

 
Figure 9: Variation of the pressure radiated by the mode 1 for 
various membranes thickness. This simulation is achieved in water 
at 60mm.The pressure level reference is 216Pa/V. 

 
Figure 10: Variation of the pressure radiated by the mode 3 for 
various membranes thickness. This simulation is achieved in water 
at 60mm.The pressure level reference is 216Pa/V. 

 

4.2 Influence of the pitch between two 
columns 

In this subsection, the mechanical impedance is fixed 
and only the horizontal pitch varied (Figure 11 and Figure 
12). As for the mechanical impedance, an optimal 
configuration in terms of sensitivity and bandwidth is found 
between 15µm and 25µm. This result is interesting because, 
contrary to the literature information, the best configuration 
is not obtained for the smallest pitch. Moreover, the 
increase of the pitch reduces the amplitude of the local 
resonance of the mode 3 (Figure 12), and consequently the 
baffle effect. The case where the pitch is the largest is an 
extreme situation where the cut-off frequency due to the 
horizontal periodicity arises at a lower frequency than the 
second resonance mode of the membrane. The cut-off 
frequency caused by the periodicity along the elevation is 
unchanged (41.7 MHz). 

 
Figure 11: Variation of the pressure radiated by the mode 1 for 
various inter-columns pitches. This simulation is achieved in 
water at 60mm.The pressure level reference is 158Pa/V. 
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Figure 12: Variation of the pressure radiated by the mode 3 for 
various inter-columns pitches. This simulation is achieved in 
water at 60mm.The pressure level reference is 158Pa/V. 

 

4.3 Influence of the number of column 
The last parameter is the number of column per element. 

Four cases are compared in Figure 13 : 4, 6, 8 and 10 
columns. The more the number increases, the more the 
baffle effect reduces. The modal analysis can help to 
interpret this result. Indeed, when the number of column 
increases, the number of normal modes increases too. 
However, in the far field, the summation of such parasitic 
modes is not constructive and consequently leads to a real 
reduction of the baffle effect on the acoustic performance of 
the transducer. Practically, this property shows that when 
the number of column per element is small (typically lower 
than 6), it is better to use synthetic beamforming techniques 
for which acoustic emission is realized with a group of 
several emitters (which arbitrarily increases the number of 
column) instead of the for which 
the elements are driven separately. 

 
Figure 13: Variation of the pressure radiated by the cMUTs 
element for various numbers of column. This simulation is 
achieved in water at 60mm.The pressure level reference is 392 
Pa/V. 

5 Conclusion 
A linear model, based on a matrix formalism, has been 

developed in order to predict the electroacoustic response 
of cMUTs array and particularly the central frequency and 
the bandwidth. A global transfer matrix is computed from 
which the pressure field radiated by one element is 
expressed as a linear combination of voltages on each 
cMUT. The normal mode theory applied to the transfer 
matrix of the array provides an interesting interpretation of 
the baffle effect in such devices. Among all eigenmodes of 
the matrix, one mode corresponds to the case where all 
columns of cMUTs vibrate in phase, this is the useful mode 
for acoustic imaging. The other modes are another 

combination of multi-polar sources for which all cMUTs do 
not vibrate in phase. Such modes are parasitic and cause the 
baffle effect. More precisely, it has been shown that, for 

ed one particular frequency 
for which the membrane oscillated. At this resonance, there 
is a strong coupling between the membrane elasticity and 
the fluid mass. Then, it produces a local trapping of the 
acoustic energy and small oscillations in the response of the 
array. N
trapping 
measurement of fluid acoustic properties. In addition, an 
impact on the directivity pattern has also been predicted 
with a reduction of the beam-width in the vicinity of the 
cut-off frequencies. Finally, some interesting trade-offs has 
been identified since it has been shown that the pitch and 
the membrane thickness can be simultaneously tuned in 
order to reject or diminish baffle effects. 
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