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The Method of Fundamental Solutions (MFS) is now a well-established technique that has proved to
be reliable for a specific range of wave problems such as the scattering of acoustic and elastic waves by
scatterers of regular shapes or by gratings. The aim of this work is to show that the technique can be
used to model absorption problems whereby an incident acoustic wave impinges on a porous slab of finite
thickness in which periodic inclusions are embedded. In the present work, the analysis is limited to the
periodic array of rigid scatterers of various shape. The extension of the MFS to periodic problems is
obtained by using appropriate periodic Greens functions for which highly convergent series exist. The
influence of the inclusions is illustrated on various examples in order to enhance the absorption properties
in the low frequency range or around specific frequency ranges.

1 Introduction

Porous materials are now widely used in different ap-
plications for passive noise reduction and control. The
type of applications ranges from room acoustics predic-
tions, sound proofing of aircrafts or cars’ passenger com-
partments to muffler designs in HVAC systems. In many
cases of practical interest, the acoustic treatment con-
sists of thick layer of porous absorbing material backed
by a rigid wall. Though efficient, these materials are
known to exhibit poor acoustic performances at low fre-
quencies. Because of these limitations, the use of mul-
tilayer materials have been investigated. An alternative
solution is to embed periodic inclusions into the porous
layer in order to provide additional energy scattering
and dissipation mechanisms. Some measurements con-
cerning these multi-scale materials have been carried out
in the specific case of rigid inclusions [1] showing the in-
terest for this concept. In practice, there is a need for
efficient numerical tools or models in order to obtain
an accurate prediction of the acoustic performances for
such materials. When inclusions are of circular shapes,
semi-analytical models are available [2]; a coupled mode
formalism has also been presented in [1]. More gener-
ally, the Finite Element Method (FEM) remains the ul-
timate tool for such purpose as the method offers almost
unlimited flexibility [3]. However, it can prove cumber-
some and time-consuming both in terms of data prepa-
ration and computation especially when the frequency
increases. This can have a negative impact when some
efficient optimizations regarding, for instance, the ge-
ometry and position of the inclusions are needed. In
a recent paper [4], the present authors investigated the
use of the Method of Fundamental Solution (MFS) for
solving single and multiple scattering problems involv-
ing obstacles filled with a poroelastic material. The
method relies on placing an appropriate set of sources
within and around the scatterer and calculate the am-
plitudes of these sources after applying the continuity
equation on the scattering surface. Results showed the
advantages offered by this method both in terms of data
reduction and computational time for a wide range of
obstacles with ‘reasonable shapes’. In the present pa-
per, the method is modified to take into account the
effect of periodical array of rigid inclusions embedded in
a porous slab of finite thickness installed on a rigid wall.
The computational model is simplified by assuming that
the material reacts like an equivalent fluid so only pres-
sure waves are allowed to propagate in the material. For
a brief nomenclature, we call ρp, kp, the density and the
wavenumber associated with the porous material. Sim-
ilarly, ρ0, k0 refers to the air domain, in all cases we

adopt the e−iωt convention.

2 Formulation

The geometry of the problem is depicted in Fig. 1. It
consist of a two-dimensional porous slab Ωp of thickness
h with rigid backing (here at x2 = −h, where x = x1e1+
x2e2). The inclusion of boundary surface Γs is assumed
perfectly rigid and the geometry is assumed d-periodic
in the e1 direction. When the array is illuminated by a
plane wave of angle of incidence θinc:

pinc
0 (x) =

Ainc

√
d

eiαx1e−iβ0

0
x2 , (1)

then the solution of the scattering problem is pseudo-
periodic, that is d-periodic with a phase shift, and the
pressure must fulfill the condition

p(x + md e1) = p(x)eimαd. (2)

Here m is a relative integer and

(α, −β0
0) = k0(sin θinc, − cos θinc)

is the incident wave-number vector. In the surround-
ing fluid domain Ω0, the total pressure is split as p0 =
psc

0 + pinc
0 where the scattered field has the Floquet de-

composition [5]:

psc
0 (x) =

∑
n∈Z

A0
n√
d

eiαnx1eiβ0

n
x2 (3)

where αn = α + n 2π
d and β0

n =
√

k2
0 − (αn)2 can be

either real (i.e. a propagating wave) or imaginary (i.e.
an evanescent wave). Similarly, the pressure field in the
slab can be decomposed as pp = pr

p + ps
p. The field pr

p

stands for the regular part:

pr
p(x) =

∑
n∈Z

Ap
n√
d

eiαnx1

(
eiβp

n
(x2+2h) + e−iβp

n
x2

)
(4)

where βp
n =

√
k2

p − α2
n. Note that the previous expan-

sion takes into account the presence of the hard wall as
∂x2

pr
p = 0 at x2 = −h.The singular part ps

p can be in-
terpreted as the field scattered by the rigid inclusions.
The main idea of the MFS is to seek the scattered field
in the form of a distribution of Q monopoles:

ps
p(x) =

Q∑
q=1

BqGd
α,w(x, yq). (5)
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Figure 1: Geometry of the periodic cell.

Here the source points yq are chosen to be located on

a fictitious curve Γ̂ within the inclusion and Bq are un-
known coefficients. Function Gd

α,w(x, y) stands for the
hard-wall periodic Green’s function

Gd
α,w(x, y) = Gd

α(x, y) + Gd
α(x, y′), (6)

where y′ is the image source y′ = (y1, −y2 − 2h) and
Gd

α(x, y) is the classical Green’s function in periodic do-
mains [5]

Gd
α(x, y) = − i

4

∑
m∈Z

H1
0 (kprm)eimαd. (7)

Here, H1
0 is the Hankel function of the first kind, rm =

(δ2
2 + (δ1 − md)2)1/2 is the distance between the field

point and the source point of the mth scatterer and
(δ1, δ2) = x − y corresponds to the distance on the
generic cell m = 0. The series (7) is unfortunately very
slowly convergent and is therefore not appropriate for
numerical computations. In [5], the author has com-
pared several methods to efficiently compute the peri-
odic Green’s function (7). Through extensive numerical
tests it was shown that the Ewald method probably of-
fers the best trade-off between computational time and
robustness. This is based on the alternative form for
Green’s function [5]:

Gd
α(x, y) =

1

4d

∑
n∈Z

eiαnδ1

iβp
n

[
e−iβp

n
δ2 erfc

(
− iβp

nd

2e
+

eδ2

d

)

+ eiβp

n
δ2 erfc

(
− iβp

nd

2e
− eδ2

d

)]

+
∑
m∈Z

∞∑
n=0

eimαd

4πn!

(
k0d

2e

)2n

En+1

(
e2r2

m

d2

)
.

(8)

The advantage of such a representation is that the series
is quickly convergent and only a small number of terms
is needed to achieve extremely accurate results (to dou-
ble standard precision if necessary). Furthermore, the
complementary Error function erfc and the exponential
integral En can be computed quickly [6]. In (8), the pos-
itive constant e is arbitrary though its value will affect

the convergence of the two summations, this is discussed
in [5] and references therein. As shown in Table 3 in [5],
e = 4 seems to be a good choice allowing fast conver-
gence and it was observed that less than twenty terms
are required in the two summations over m and around
ten in the summation over n to nearly achieve machine
precision.

The first set of equations is obtained after apply-
ing the classical continuity conditions at the air-porous
interface Γc, that is p0 = pp and ρ−1

0 ∂x2
p0 = ρ−1

p ∂x2
pp

with x2 = 0. At the interface, it is more advantageous to
use the the Floquet mode representation for the Green’s
function representation [5]

Gd
α(x, y) =

1

2d

∑
n∈Z

eiβp

n
|δ2|eiαnδ1

iβp
n

, (9)

so that we can invoke the orthogonality of the Floquet
modes to give

A0
n + δ0nAinc = Ap

n

(
eiβp

n
2h + 1

)
+

Q∑
q=0

Cnq Bq (10)

and

Rn

(
A0

n − δ0nAinc
)

= Ap
n

(
eiβp

n
2h − 1

)
+

Q∑
q=0

Cnq Bq

(11)
with Rn = (ρpβ0

n)/(ρ0βp
n) and

Cnq = cos
[
βp

n

(
yq2 + h

)] e−iαnyq1
+iβp

n
h

iβp
n

√
d

(12)

In these equations, n ranges from −N to N so the num-
ber of Floquet modes is 2N + 1. The second set of
equations is obtained by applying the rigid boundary
conditions at some collocation points xj , j = 1, ... J
located on the surface of the inclusion Γs:

∂npp(xj) = ∂npr
p(xj) + ∂nps

p(xj) = 0 (13)

where n is the normal unit vector.
Once the wave amplitudes have been evaluated, the

integration of the acoustic intensity over the unit cell
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using the orthogonality relation of the Floquet modes
given in (3) leads to the energy balance:

A + R = 1, (14)

where the energy reflection coefficient R is defined as
the ratio of the scattered power in the x2 direction

Pr =
∑
n∈Z

Re
{

β0
n

}|A0
n|2/(ρ0ω), (15)

to the incident power

Pi = |Ainc|2k0/(ρ0ω). (16)

3 Results

In this section, numerical results of practical inter-
est concerning rigid inclusions of circular and elliptical
shape are presented. In particular, we shall focus on
the evaluation of the absorption coefficient A = 1 − R
which is the quantity of interest. Numerical aspects of
the method such as the convergence analysis and the
conditioning of the algebraic system shall not be dis-
cussed here as this should be the subject for a separate
paper. The configuration studied here is somewhat sim-
ilar to the one from [2]. It consists of porous slab of
thickness h = 2 cm made with Fireflex (Recticel, Bel-
gium). For the sake of completeness, the material char-
acteristics are reminded here: porosity φ = 0.95, flow
resistivity σ = 8900 Nm-4s, viscous and thermal char-
acteristic lengths Λ = 180μm and Λ′ = 360μm and the
tortuosity αinf = 1.42.

The first example concerns that of an incoming pres-
sure wave of normal incidence (θinc = 0). Four type
of inclusions are considered: a circular one with radius
7.5 mms, and three elliptical inclusions with different in-
clinations as depicted in Fig. 2. The source points loca-
tion for the expansion of the singular field in the porous
slab is also shown. Black arrows represent the local unit
normal vectors at collocation points. In all cases, the
total number of degrees of freedom does’nt exceed 40,
that is around 30 source points and 5 Floquet modes.
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Figure 2: Circular and elliptical inclusions with
different inclinations.

Fig. 3 shows the absorption coefficients for different
type of inclusions. Because there is no exact solutions
for these configurations, except maybe for the circular
inclusion, the reference solutions are computed using a
finite element model. The computations are carried out
using Lagrange quadratic finite elements for the descrip-
tion of the acoustic pressure in both domains. For the
radiation condition of the scattered field in the air do-
main, we choose to use the Dirichlet to Newman (DtN)
map based on the Floquet decomposition Eq. (3). This
approach was favored here as the use of the PML tech-
nique is not efficient for ‘low-frequency’ applications, i.e.
when the wavelength is large compared to the size of the
computational domain (the dimension of a unit cell is
about 2 − 3 cms). The number of finite elements used
in order to capture the geometry of the inclusions is
about 1000. The comparisons between the two methods
are excellent and this makes the MFS a good candidate
for solving this type of problems. The overall computa-
tional time (using the MFS) is about 0.1 s per frequency.
On can identify the appearance of the second Floquet
mode (|n| = 1) around f = c0/d ≈ 17000 Hz (here
d = 2 cm). These early results suggest that the horizon-
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Figure 3: Absorption coefficients for different type of
inclusions when the porous slab is excited at normal

incidence. Results are computed with the MFS (lines)
and with the FEM (dots). The type of inclusion is
identified by the color: horizontal ellipse (black),

vertical ellipse (dark grey), oblique (light grey), circle
(dash-dot).

tal elliptical inclusion shows quite good performance in
the low frequency range. It is interesting to see how this
is modified when the slab is illuminated under oblique
incidence. In this regard, Fig. 4 shows the absorption
coefficient in function of the frequency and the angle of
incidence. This shows good performance in the inter-
val f ∈ [2000 Hz, 4000 Hz] irrespective of the incident
wave with a peak of absorption close to unity around
3000 Hz. For the sake of comparison, results concerning
the homogeneous slab (no inclusion) are also shown in
Fig. 5. We may notice a similar dip around 5000-6000
Hz when θinc ∈ [0, π/4]. This drop in performance has
been observed for various shapes.

The last numerical experiment concerns the scatter-
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Figure 4: Plot of the absorption coefficient in function
of the frequency and the angle of incidence (horizontal

elliptical inclusion).
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Figure 5: Plot of the absorption coefficient in function
of the frequency and the angle of incidence

(homogeneous slab).

ing by a non-convex rigid inclusion having the shape
of letters ‘M’. The boundary has been drawn using a
graphical software and interpolated with Bezier curves.
Fig. 6 shows the locations of the source points as well as
the collocation points. Here again, the MFS resulting
algebraic system is of very small size as the number of
source points does not exceed 60.

Fig. 7 shows the absorption coefficients when the
slab is illuminated by a normal incident plane wave.
The comparison with the FEM results shows reason-
ably good agreement from an engineering point of view
although small discrepancies are clearly visible. The
reasons for this are not entirely clear yet as similar cal-
culations (in a somewhat different context) presented
in [4] did not show such differences.

4 Conclusion

The application of the MFS for the acoustic wave
scattering by a porous slab of finite thickness in which
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Figure 6: ‘M’-shaped rigid inclusion.
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Figure 7: Absorption coefficients for the letter ‘M’
when the porous slab is excited at normal incidence.
Results are computed with the MFS (lines) and with

the FEM (dots). The grey line refers to the
homogeneous slab.

periodic rigid inclusions are embedded has been pre-
sented. Through many illustrative examples of increas-
ing difficulty, comparisons with results computed using
a finite element formulation illustrate the advantages of
the method both in terms of computational resources
and mesh preparation. It is hoped that the benefit of
the MFS should be even bigger when dealing with poroe-
lastic materials and/or for 3D configurations.
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