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In agriculture, the soil structure, moisture content and strength have profound effects on plant growth. When soils
are regarded as porous media, sub-surface wave propagation can be indicative of the soil status. Such propagation
can be initiated by sources of airborne sound through acoustic-to-seismic coupling. Measurements of the ratio of
near-surface sound pressure to acoustically induced solid particle motion can be exploited to estimate the acoustic
and elastic properties of soils. Traditional methods of monitoring seismic signals by use of buried geophones are
invasive and may affect the soil samples of interest. This paper describes a non-invasive acoustic-seismic technique.
A loudspeaker was used to generate airborne sound, and the reflected sound and the subsequent vibration of the
soil surface were recorded by microphones and a laser Doppler vibrometer respectively. These data were used to
estimate acoustic and elastic soil parameters through an optimisation process minimising the differences between
the data and model predictions based on incorporation of a modified Biot theory in a wave propagation model.
Example results of laboratory and field measurements are reported.

1 Introduction

Acoustic-to-seismic (A-S) coupling is a phenomenonwh-
ereby seismic wave propagation inside soils is initiated by an
airborne acoustic sound. The top layers of soils are usually
more porous and less dense than deep layers due to weather-
ing and plant growth and are therefore more likely to support
the seismic motion induced by acoustic means [1]. A-S cou-
pling has been used to detect buried landmines containing a
resonant air cavity by mapping the anomalous acoustically-
induced soil particle motion immediately above the landmine
using a laser Doppler vibrometer (LDV) [2].

Outdoor sound propagation over a ground has been ex-
tensively investigated [3, 4]. Typically the ground has been
acoustically characterised by a surface impedance which can
be deduced from either the excess attenuation [5] or level
difference [6] with the aid of sound propagation models. The
deduced surface impedance spectra are then analysed further
to estimate several physical parameters such as porosity.

Among the models of wave propagation, the reflected
field of an incoming spherical wave from a monopole point
source over a flat reflecting surface is well known through the
Sommerfeld integral in the context of both electromagnetism
and acoustics [7]. For a long-range sound propagation, the
integral was simplified by identifying the poles of the plane-
wave reflection coefficient [8]. The ground was idealised as
a rigid-frame porous material. For a typical outdoor ground
with a low pore-borne wave speed, the ground soil has been
treated as locally-reacting. Subsequent work has allowed the
ground to be extended or bulk reacting [9].

Although the assumption of a rigid frame is satisfactory
for predicting sound propagation above the ground, it is not
adequate to explain the response of a buried geophone to
sound waves incident on the ground surface [10]. For this
type of A-S coupling, it may be necessary to consider the
ground soil to be poro-elastic rather than poro-rigid. Maurice
A. Biot identified three types of elastic waves propagating in
a fluid-saturated porous elastic solid: type-I and -II compres-
sional waves and a shear wave [11]. When Biot’s poroelas-
ticity theory is combined with wave propagation model in
layered media, it has been shown that the wave propagation
can be modelled above and under non-rigid ground from a
monopole acoustic source [12]. This modelling is used for
the current work to deduce the physical parameters of soils.
A-S coupling has been measured on unconsolidated sand in
a laboratory [13] and also on a flat open field [1] using an
LDV and a microphone. A compression driver with an ex-
tension tube was used to generate airborne sound, and the
reflected sound and the subsequent vibration of the soil sur-
face were recorded by microphones and an LDV respectively.

These data, all non-invasively obtained, were used to esti-
mate acoustic and elastic/seismic soil parameters using an
optimisation process minimising the differences between the
data and model predictions.

2 Methods

2.1 Biot-Stoll poroelasticity model

For Biot poroelasticity theory, we need a certain num-
ber of physical parameters to describe the wave propagation
within an air-saturated unbounded homogenous and isotropic
poroelastic material. First set of required parameters define
the properties of interstitial air within porous frame. They
are density (ρf), dynamic viscosity (η), atmospheric pres-
sure (P), specific heat ratio (γ), and Prandtl number of air
(Npr). These are well documented and hence can be treated
as known constants. When these are combined with a model
for pore shape and structure, one can define the bulk modulus
of the interstitial air (Kf):

Kf = (γ P)/
[
γ − (γ − 1)H(λ

√
Npr)
]

(1)

Here, H(·) is a correction factor to account for the deviation
of the interstitial air density from that of free air, and has
been calculated for many ideal pore shapes [4]. The viscosity
correction factor (F(·)) for a two-dimensional pore shape was
introduced in Biot’s seminal paper [11]:

F(λ) =
(λ
√
−i)2 (1 − H(λ))

3 H(λ)
(2)

H(λ) = 1 − tanh(λ
√
−i)/(λ

√
−i) (3)

λ =

√
3ρf ω q2

Ωσ
(4)

,where angular frequency, tortuosity, porosity and flow re-
sistivity are symbolised by ω, q2, Ω and σ respectively. i
is the imaginary unit of

√
−1 and the harmonic motion of

exp(−iωt) is assumed with time denoted by t. When the
wavelength of interest is much larger than the typical sizes
of soil particles and pores, the characteristic equations of the
wave numbers for type-I (l1) and -II (l2) compressional waves
and a shear wave (l3) may be written in the Biot-Stoll formu-
lation [14]:

∣∣∣∣∣∣ H l21,2 − ρω2 ρf ω
2 −C l21,2

ρf ω
2 −C l21,2 ma ω2 − M l21,2 + iωFσ

∣∣∣∣∣∣ = 0 , (5)
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∣∣∣∣∣∣ ρω
2 − μ l23 ρf ω

2

ρf ω
2 ma ω2 + iωFσ

∣∣∣∣∣∣ = 0 . (6)

The coefficients H, C, and M are re-formulations of the elas-
tic constants P, Q, and R appearing in Biot’s theory, and the
detailed formulae can be found in Ref. [14]. ma is an ap-
parent mass defined by q2ρf/Ω. And μ is the complex shear
modulus, represented by N in Biot’s original notation of P,
Q, R, and N.

Since the pore-fluid related parameters are well defined
for a certain idealised model for pore shape, the remaining
parameters in solving the characteristic equations (Eqs. (5)
and (6)) are mainly structure-related. They are flow resistiv-
ity, complex bulk and shear moduli of the porous structure,
and tortuosity.

2.2 Wave-propagation model

Once wave numbers of three types of elastic waves are
found, the reflection and refraction of waves on layer inter-
faces can be determined by solving a boundary value prob-
lem. When an airborne acoustic source is placed above infi-
nite plane interface, the resulting wave field can be consid-
ered as axisymmetric. The wave motion according to Helm-
holtz equation may be represented by using displacement po-
tentials (Ψ) [12]:

∇2Ψm,n(r, z) + l2m,nΨm,n(r, z) = δn(r, z) . (7)

The second subscript n denote a layer. The first subscript m
indicates the wave types: 0 for a wave in the air layer above
the ground; 1 and 2 for two compressional waves, 3 for a
shear wave in a soil layer. The wave number of soils (lm for m
= 1, 2, 3) are obtained by Eqs. (5) and (6). The wave number
for air layer is l0 = ω/c f , where c f is the speed of sound in
air. A point source in a layer n is expressed by δn. Due to the
nature of axisymmetric field, by applying Hankel transform,
the vertical dimension (z) can be separated from the radial
dimension (r). The forward Hankel transform applied in the
radial dimension is:

ψm,n(ξ, z) =
∫ ∞

0
Ψm,n(r, z)J0(lr r) r dr (8)

,where J0(·) is the zeroth-order Bessel functions of the first
kind with a complex argument. ξ is the projection of wave
number to the surface and is usually referred to as horizontal
wave number. The transformed quantity (ψm,n) in the left-
hand side is a Green’s function which is dependent on depth
but independent of range. Full execution of Hankel trans-
form to Eq. (7) now leads to the following ordinary differen-
tial equation which is independent of range and is uniquely
determined at a given depth (h):

d2

dz2ψm,n(ξ, h) + β2
m,nψm,n(ξ, h) = δn(h) , (9)

β2
m,n = l2m,n − ξ2 .

These Green’s functions are built with details such as the lo-
cation of a source and the amplitudes of propagating waves.
For a monopole source near plane interface, the contribution
from the source and the interaction with the boundary are es-
sentially the Sommerfeld representation. And Green’s func-
tions defined at all the layers need to be calculated together
by constructing a global matrix [12]. This is a system of

linear equations composed of boundary conditions of all lay-
ers. For an air-soil boundary, four boundary conditions are
to be met: continuity of air pressure, normal displacement,
normal stress and tangential stress. For a soil-soil bound-
ary, two more boundary conditions are required: continuity
of normal relative fluid displacement and tangential frame
displacement.

Once the Green’s function is found for each layer as a
function of depth of interest by Eq. (9), the displacement
potentials (Ψm,n) at a range of interest (R) can be obtained
through the inverse Hankel transform:

Ψm,n(R, h) =
∫ ∞

0
ψm,n(ξ, h)J0(ξ R) ξ dξ (10)

Finally, the displacement potentials are converted back to
particle displacements of corresponding phase, from which
acoustic pressure and soil particle velocities are further cal-
culated [12].

2.3 Measurements

For a monopole acoustic source, we have used a compres-
sion driver extended by a metal pipe with an internal diame-
ter of 2 cm. For the detection of sound field in air, two pre-
cision microphones (Brüel & Kjær model) have been placed
above soils and vertically separated. For the monitoring of
the soil surface vibration, a laser Doppler vibrometer (Poly-
tec model) has been deployed with the laser beam obliquely
incident to the surface.

The generation and acquisition of data have been made
using a National Instruments data acquisition (DAQ) board
controlled by a Matlab data acquisition toolbox. A gener-
ated electrical source signal is enhanced via a power am-
plifier before reaching the compression driver. Microphone
signals are also amplified before an analogue-to-digital con-
verter. The laser signal is conditioned within its controller
unit. Then, signals from the microphones and the LDV are
digitised in the DAQ board. These time-domain signals are
then converted to frequency domain through discrete Fourier
transform. Finally, three transfer functions are evaluated:
two A-S coupling for the ratio of the LDV output to each
microphone signal and a level difference between two mi-
crophone readings. These transfer functions are later used
for deducing the soil parameters.

2.4 Optimisation

During measurements, we have arranged two microphones
and an LDV, and hence three transfer functions between them
are evaluated for each measurement dataset. An optimisation
algorithm has been run to find a parameter combination to
minimise the differences of all three pairs of the measured
and the simulated transfer functions (TF):

p=3∑
p=1

∑
f

(
|TFmea, p( f )| − |TFsim, p( f )|

)2
. (11)

The subscripts mea and sim denote the measured and the sim-
ulated transfer functions. The simulation is carried out using
the wave propagation model introduced earlier. The variable
f is the temporal frequency, and the type of a transfer func-
tion is indicated by a subscript p. The difference is calculated
based on the magnitudes of complex transfer functions. We
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have found that the optimisation is more effective if only the
magnitudes of the transfer functions are used rather than the
full complex domain data. This may be because enveloping
the complex data effectively smooths the measured data.

For optimisation problems, it is useful if a search space
can be visualised in simulation. For a multi-dimensional
optimisation, however, it is not straightforward to plot the
search space of all variables in a single intuitive image. In-
stead, one variable (i.e., one-dimensional) or a pair of vari-
ables (i.e., two-dimensional) can be chosen at a time while
the rest of variables are fixed.

Figure 1 shows the simulation of a cost function with
uniformly varying porosity while the rest of parameters are
fixed. The simulated data for the cost function is the A-S
coupling transfer function between signals from imaginary
microphone and LDV. The overall shape of the cost function
can be considered to be convex and well-posed. The cost
function for the real part of bulk modulus of soil structure is
shown in Figure 2. The search space is not as smooth as that
of the porosity.
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Figure 1: Simulation of a cost function of
acoustic-to-seismic coupling transfer function for the

porosity while other parameters are fixed. The exact value
of the porosity is 0.45.
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Figure 2: Simulation of a cost function of
acoustic-to-seismic coupling transfer function for the real
part of bulk modulus while other parameters are fixed. The

exact value of the modulus is 36 MPa.

When the outcomes in Figures 1 and 2 are treated as one-
dimensional optimisation problems on their own, cost func-
tions in the kind of Figure 1 can be easily addressed with a
local-search algorithm, while one may need a global-search
algorithm for the kind in Figure 2. When the optimisation
problem is multi-dimensional, it is anticipated the complex-
ity of the total search space can be increased immensely.

As a result of the tortuous structure of the overall search
space, it has been found that a single or a few executions of
optimisation algorithms, regardless of local or global meth-
ods, are not up for the task addressed in this paper. An ef-
fective strategy we have found is simply to run local-search
algorithms as many times as possible with different initial
guesses to start the algorithm.

For the current work, we have created a Latin hyper-
cube [15] to uniformly spread the initial guesses. For each
initial seed, we have run the Rosenbrock algorithm [16] for
a local search. We have then chosen the first few best so-
lutions obtained by all sets of local searches for further ex-
amination. Since the initial guesses are uniformly spaced
by the Latin hypercube sampling, most of the search space
can be assessed equally and more efficiently than by random
guesses, and the chance of reaching the global solution can
be increased.

3 Results

The measurements have been conducted both indoors and
outdoors. The indoor measurements were carried out in a
semi-anechoic chamber. The outdoor measurements were
conducted at a field. Both places are located at the Open
University, United Kingdom.

For indoor applications, we have carried out measure-
ments over dry sand filled in an aluminium tray (1 m × 1 m ×
0.11 m) placed on a concrete floor in a semi-anechoic cham-
ber. The particle size of the sand was graded between 0.5 and
1.0 mm. The rest of the floor was covered with plastic foam
wedges to reduce the unwanted reflection of sounds.

Outdoors, we constructed a trench with the size of 2 m
× 2 m × 0.47 m within the premises of the Open Univer-
sity. Concrete substrate with a few centimetre in thickness
was laid on the bottom to define an acoustically impervious
rigid boundary. No treatment was made for the four sides.
The trench was filled with builder’s sand whose particle size
was not graded. The area is surrounded by mainly clay soils
covered with grass.

Figure 3 compares the A-S transfer functions for the mea-
surement and the simulation for dry sand sample at a semi-
anechoic chamber. The heights of the source and the micro-
phone were 9 and 14 cm. The distances from the source to
the LDV focus and to the microphone were 18 and 43 cm.
The incident angle of the laser beam was 51◦. The deduced
parameter values are shown in Table 1.

Figure 4 compares the A-S transfer functions for the mea-
surement and the simulation for sand at an outdoor trench.
The heights of the source and the microphone were 23 and
29 cm. The distances from the source to the LDV focus and
to the microphone were 51 and 106 cm. The incident an-
gle of the laser beam was 58◦. For Figure 4, the sand sample
was assumed to be a single homogenous layer above the con-
crete substrate. The deduced parameter values are shown in
Table 1.

Figure 5 shows the improved fitting when the sand sam-
ple inside the trench was assumed to consist of two layers.
The depth of the top layer was also deduced while the to-
tal depth of the two layers was kept as 47 cm. The deduced
parameter values are shown in Table 1.
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Figure 3: Comparisons of the measured (in grey) and the
simulated acoustic-to-seismic coupling (in black) based on
the deduced parameters for dry sand at a laboratory. Part of
the measured data is missing due to poor signal return for

the LDV.

1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

M
ag

ni
tu

de
 /m

m
 s
−

1  P
a

Frequency /kHz

Figure 4: Comparisons of the measured (in grey) and the
simulated acoustic-to-seismic coupling (in black) based on
the deduced parameters for outdoor sand trench. A single

layer was assumed for the simulation.

4 Conclusion

The feasibility of using measurements of acoustic-to- seis-
mic (A-S) coupling to deduce the physical parameters of soils
has been investigated both in the laboratory and outdoors in
a trench. The determined soil parameters were flow resistiv-
ity, porosity, complex bulk and shear moduli of soil struc-
ture. For soils which were better described by two layers
than one, the depth of the top layer was also estimated. A
compression driver extended with a tube was used to emulate
a monopole acoustic source. The resulting sound field was
recorded by two precision microphones and the induced soil
particle velocity was measured by a laser Doppler vibrom-
eter. Three pairs of the measured transfer functions were
compared to the simulated counterparts evaluated by a nu-
merical model incorporating Biot poroelasticity theory and
wave propagation model in layered media. An optimisation
algorithm was used to find a set of soil parameters which
minimise the difference between the measured and the sim-
ulated transfer functions. Latin hypercube was adopted for
uniform sampling of initial guesses. It was shown that dual-
layer analysis produced better agreement than single-layer
assumption for outdoor soils. The current work has demon-
strated that soils can be characterised non-invasively through
A-S coupling.
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Figure 5: Comparisons of the measured (in grey) and the
simulated acoustic-to-seismic coupling (in black) based on
the deduced parameters for outdoor sand trench. Two layers

were assumed for the simulation.

Table 1: Paramter values used to plot the simulated
acoustic-to-seismic coupling transfer functions in Figures 3,
4 and 5. Assumed values are annotated with †, and the rest

are deduced through optimisation.

Dry
sand

Single-
layer
trench

Dual-layer trench

Layer 1 Layer 2

Flow resistiv-
ity /kPa s m−2

141.6 152.8 139.6 1686.6

Porosity 0.42 0.34 0.34 0.26

Bulk modulus
/MPa

16.0 24.2 29.8 432.1

Shear modulus
/MPa

3.2 15.4 11.5 50.2

Loss factor 0.010 0.001 0.004 0.059

Depth /cm 11.0† 47.0† 3.5 43.5†
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