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Synthetic partially reticulated polyurethane foams are deployed in many situations for noise and vibration control.
So understanding the behaviour of these foams when exposed to acoustic and/or mechanical waves is essential.
Much progress has been made through identification and non-acoustic measurements of parameters introduced
in the seminal works by Biot and, subsequently, by Allard, that describe the acoustical and elastic properties.
Conversely, these parameters can be estimated from measurements of vibroacoustical responses. In principle
measurements of acoustic-to-frame coupling should be more effective than measurements that focus on either
acoustic or frame behaviour separately. This idea has been pursued in many papers co-authored by Walter Lauriks
and Jean-François Allard. This paper describes recent demonstrations that pore-related and elastic parameters of
air-saturated plastic foam can be estimated from data obtained by conjunctive use of a microphone and a laser
Doppler vibrometer.

1 Introduction

Biot identified three types of elastic waves propagating
in a fluid-saturated porous elastic solid: type-I and -II com-
pressional waves and a shear wave [1]. He showed that it
was possible to predict such wave propagation with a set of
physical parameters which may represent a porous solid un-
der continuum assumption. Therefore, the experimental de-
termination of so-called Biot parameters has been an active
topic since the advent of his poroelasticity theory.

For many purposes, the porous materials of interest can
be considered to have rigid frames so that there is only one
dominant wave type propagating inside them. The reduced
number of parameters certainly helps to solve an ‘inverse’
problem to determine them. It has been reported [2] that tor-
tuosity and two characteristic lengths of foams may be de-
duced by using a differential evolution algorithm. The mea-
sured data was normal surface impedance of a specimen fit-
ted inside an impedance tube. The optimisation was based
on the rigid-frame model of Johnson-Champoux-Allard.

Recently, to determine the rigidity parameters of reticu-
lated foams, Biot’s poroelasticity theory has been re-visited
for the foams [3]. A monopole acoustic field was created
above a polyurethane foam. The resulting normal and ra-
dial velocities on the foam surface were measured by a laser
Doppler vibrometer (LDV). These velocities were predicted
by using the Biot’s poroelasticity theory and the Sommerfeld
integral depicting the acoustic field of a monopole above a
plane boundary. Other parameters which can be measured by
resorting to a rigid-frame model were determined separately
based on the measurements in a Kundt tube. Only rigidity
parameters, specifically Poisson’s ratio and shear modulus,
were deduced by exploiting the acoustic-to-frame (A-F) cou-
pling phenomenon.

In this paper, we have investigated the feasibility of us-
ing the A-F coupling alone to determine both the set of pa-
rameters associated with elasticity and the set usually mea-
sured using a rigid-frame model. The parameters estimated
in the current work are flow resistivity, tortuosity and two in-
dependent elasticity parameters. A compression driver with
an extended pipe was used to generate airborne sound, and
the reflected sound and the subsequent vibration of the foam
surface were recorded by a microphone and an LDV respec-
tively. These data were used to estimate foam parameters
through an inverse problem: an optimisation process min-
imising the differences between the data and model predic-
tions.

2 Methods

2.1 Biot-Stoll poroelasticity model

For Biot poroelasticity theory, we need a certain num-
ber of physical parameters to describe the wave propagation
within an air-saturated unbounded homogenous and isotropic
poroelastic material. First set of required parameters defines
the properties of interstitial air within porous frame. They
are density (ρf), dynamic viscosity (η), atmospheric pres-
sure (P), specific heat ratio (γ), and Prandtl number of air
(Npr). These are well documented and hence can be treated
as known constants. When these are combined with a model
for pore shape and structure, one can define the bulk modulus
of the interstitial air (Kf):

Kf = (γ P)/
[
γ − (γ − 1)H(λ

√
Npr)
]

(1)

Here, H(·) is a correction factor to account for the deviation
of the interstitial air density from that of free air, and has
been calculated for many ideal pore shapes [4]. The viscosity
correction factor (F(·)) for a two-dimensional pore shape was
introduced in Biot’s seminal paper [1]:

F(λ) =
(λ
√
−i)2 (1 − H(λ))

3 H(λ)
(2)

H(λ) = 1 − tanh(λ
√
−i)/(λ

√
−i) (3)

λ =

√
3ρf ω q2

Ωσ
(4)

,where angular frequency, tortuosity, porosity and flow re-
sistivity are symbolised by ω, q2, Ω and σ respectively. i
is the imaginary unit of

√
−1 and the harmonic motion of

exp(−iωt) is assumed with time denoted by t. There are
several experimental methods to measure porosity directly.
And porosity can also be calculated by invoking Ω = 1 −
ρb/ρs. The bulk density of foam (ρb) can be easily mea-
sured, and the density of the frame material (ρs) may be as-
sumed: 1200 kg m−3 for polyurethane [5]. When the wave-
length of interest is much larger than the typical sizes of
frame and pores, the characteristic equations of the wave
numbers for type-I (l1) and -II (l2) compressional waves and
a shear wave (l3) may be written in the Biot-Stoll formula-
tion [6]:

∣∣∣∣∣∣ H l21,2 − ρω2 ρf ω
2 −C l21,2

ρf ω
2 −C l21,2 ma ω2 − M l21,2 + iωFσ

∣∣∣∣∣∣ = 0 , (5)
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∣∣∣∣∣∣ ρω
2 − μ l23 ρf ω

2

ρf ω
2 ma ω2 + iωFσ

∣∣∣∣∣∣ = 0 . (6)

The coefficients H, C, and M are re-formulations of the elas-
tic constants P, Q, and R appearing in Biot’s theory, and the
detailed formulae can be found in Ref. [6]. ma is an appar-
ent mass defined by q2ρf/Ω. And μ is the shear modulus,
represented by N in Biot’s original notation of P, Q, R, and
N.

Since the pore-fluid related parameters are well defined
for a certain idealised model for pore shape, the remain-
ing parameters in solving the characteristic equations (Eqs. 5
and 6) are mainly frame- and structure-related. They are
flow resistivity, complex bulk and shear moduli of the porous
structure, and tortuosity.

2.2 Wave-propagation model

Once wave numbers of three types of elastic waves are
found, the reflection and refraction of waves on layer inter-
faces can be determined by solving a boundary value prob-
lem. When an airborne acoustic source is placed above infi-
nite plane interface, the resulting wave field can be consid-
ered as axisymmetric. The wave motion according to Helm-
holtz equation may be represented by using displacement po-
tentials (Ψ) [7]:

∇2Ψm,n(r, z) + l2m,nΨm,n(r, z) = δn(r, z) . (7)

The second subscript n denote a layer. The first subscript m
indicates the wave types: 0 for a wave in the air layer above
the foam; 1 and 2 for two compressional waves, 3 for a shear
wave in a foam layer. The wave number of foams (lm for
m = 1, 2, 3) are obtained by Eqs. (5) and (6). The wave
number for air layer is l0 = ω/cf, where cf is the speed of
sound in air. A point source in a layer n is expressed by δn.
Due to the nature of axisymmetric field, by applying Hankel
transform, the vertical variable (z) can be separated from the
radial dimension (r). The forward Hankel transform applied
in the radial dimension is:

ψm,n(ξ, z) =
∫ ∞

0
Ψm,n(r, z)J0(lr r) r dr (8)

,where J0(·) is the zeroth-order Bessel functions of the first
kind with a complex argument. ξ is the projection of wave
number to the surface and is usually referred to as horizontal
wave number. The transformed quantity (ψm,n) in the left-
hand side is a Green’s function which is dependent on depth
but independent of range. Full execution of Hankel trans-
form to Eq. (7) now leads to the following ordinary differen-
tial equation which is independent of range and is uniquely
determined at a given depth (h):

d2

dz2ψm,n(ξ, h) + β2
m,nψm,n(ξ, h) = δn(h) , (9)

β2
m,n = l2m,n − ξ2 .

These Green’s functions are built with details such as the lo-
cation of a source and the amplitudes of propagating waves.
For a monopole source near plane interface, the contribution
from the source and the interaction with the boundary are es-
sentially the Sommerfeld representation. And Green’s func-
tions defined at all the layers need to be calculated together
by constructing a global matrix [7]. This is a system of lin-
ear equations composed of boundary conditions of all layers.

For an air-foam boundary, four boundary conditions are to be
met: continuity of air pressure, normal displacement, normal
stress and tangential stress.

Once the Green’s function is found for each layer as a
function of depth of interest by Eq. (9), the displacement
potentials (Ψm,n) at a range of interest (R) can be obtained
through the inverse Hankel transform:

Ψm,n(R, h) =
∫ ∞

0
ψm,n(ξ, h)J0(ξ R) ξ dξ (10)

Finally, the displacement potentials are converted back to
particle displacements of corresponding phase, from which
acoustic pressure and frame displacements are further calcu-
lated.

2.3 Measurements

For an acoustic source, we have employed a compression
driver extended by a tube with an internal diameter of 2 cm.
This configuration is known to be a good approximation of a
monopole acoustic source in the medium audible frequency
range [8]. A precision microphone (Brüel & Kjær model)
has been arranged for the detection of sound field in air close
to the foam surface. For the monitoring of the foam surface
vibration, a laser Doppler vibrometer (Polytec model) has
been deployed with the laser beam obliquely incident to the
surface.

The generation and acquisition of data have been made
using a National Instruments data acquisition (DAQ) board
controlled by a Matlab data acquisition toolbox. A gener-
ated electrical source signal is enhanced via a power ampli-
fier before reaching the compression driver. The detected
signal by a microphone is also amplified before an analogue-
to-digital converter. The laser signal is conditioned within
its controller unit. Then, data from the microphone and the
LDV are quantified in the DAQ board. These time-domain
signals are then converted to frequency domain through dis-
crete Fourier transform. Finally, the transfer functions of two
signals are evaluated: A-F coupling for the ratio of the LDV
output to a microphone signal. This transfer function is later
used for deducing the foam parameters.

The heights of the microphone and the acoustic source
were 28 and 154 mm. The radial distance from the source to
the LDV focus and the microphone were 154 and 295 mm.
The incidence angle of the laser beam was 44◦. The size of
polyurethane foam was 600 mm × 600 mm × 49 mm and
was bonded to a medium-density fibreboard by double-side
tapes.

2.4 Optimisation

An optimisation algorithm has been run to find a param-
eter set to minimise the difference of the measured and the
simulated transfer functions (TF):∑

f

(
|TFmea( f )| − |TFsim( f )|

)2
. (11)

The subscripts mea and sim denote the measured and the sim-
ulated transfer functions. The simuation is carried out using
the wave propagation model introduced earlier. A variable f
is the temporal frequency. The difference is calculated based
on the magnitudes of complex transfer functions. We have
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found that the optimisation is more effective if only the mag-
nitudes of the transfer functions are used rather than the full
complex domain data. This may be because enveloping the
complex data effectively smooths the measured data.

For optimisation problems, it is useful if a search space
can be visualised in simulation. For a multi-dimensional
optimisation, however, it is not straightforward to plot the
search space of all variables in a single intuitive image. In-
stead, one variable (i.e., one-dimensional) or a pair of vari-
ables (i.e., two-dimensional) can be chosen at a time while
the rest of variables are fixed.

Figure 1 shows the simulation of a cost function with uni-
formly varying flow resistivity while the rest of parameters
are fixed. The simulated data for the cost function is the A-
F coupling transfer function between signals from imaginary
microphone and LDV. The overall shape of the cost function
can be considered to be convex and well-posed. The cost
function for the real part of bulk modulus of porous frame is
shown in Figure 2. The search space is not as smooth as that
of the flow resistivity.
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Figure 1: Simulation of a cost function of acoustic-to-frame
coupling transfer function for the flow resistivity while other
parameters are fixed. The exact value of the flow resistivity

is 10 kPa.
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Figure 2: Simulation of a cost function of acoustic-to-frame
coupling transfer function for the real part of bulk modulus

while other parameters are fixed. The exact value of the
modulus is 997 kPa.

When the outcomes in Figures 1 and 2 are treated as one-
dimensional optimisation problems on their own, cost func-
tions in the kind of Figure 1 can be easily addressed with a
local-search algorithm, while one may need a global-search
algorithm for the kind in Figure 2. When the optimisation
problem is multi-dimensional, it is anticipated that the com-
plexity of the total search space can be increased further.

As a result of the tortuous structure of the overall search
space, it has been found that a single or a few executions of
optimisation algorithms, regardless of local or global meth-
ods, are not up for the task addressed in this paper. An ef-
fective strategy we have found is simply to run local-search
algorithms as many times as possible with different initial
guesses to start the algorithm.

For the current work, we have created a Latin hyper-
cube [9] to uniformly spread the initial guesses. For each
initial seed, we have run the Rosenbrock algorithm [10] for a
local search. We have then chosen the first few best solutions
obtained by all local searches for further examination. Since
the initial guesses are uniformly spaced by the Latin hyper-
cube sampling, most of the search space can be assessed
equally and more efficiently than by random guesses, and the
chance of reaching the global solution can be increased.

3 Results

Figure 3 compares the measured A-F transfer function
and the outcome of the optimisation process for polyurethane
foam. The deduced parameters are:

• flow resistivity = 8760 Pa s m−2

• tortuosity = 2.19

• real part of bulk modulus = 689 kPa

• real part of shear modulus = 11.5 kPa

• loss factor for both moduli = 0.09

0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

Frequency  /kHz

M
ag

ni
tu

de
 /m

m
 s
−

1  P
a−

1

Measurement
Model

Figure 3: Comparison between the measurement and the
model calculation of the acoustic-to-frame coupling over

polyurethane foam.

During the optimisation, it was assumed that the loss fac-
tors for both moduli were equal. The other assumed pa-
rameters are: thickness, 49 mm; porosity, 0.98; density of
polyurethane material, 1200 kg m−3; air density, 1.2 kg m−3;
specific heat ratio for air, 1.4; Prandtl number for air, 0.71;
bulk modulus for solid, 62.5 MPa; and atmospheric pressure,
101.3 kPa. The foam was assumed to be placed on a rigid
acoustically impervious half-space.

4 Conclusion

A study has been made of the feasibility of deducing
foam parameters using acoustic-to-frame (A-F) coupling data.
A compression driverwith an extended pipe was placed above
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a hard-backed plastic foam layer, and the resulting acoustic
field and surface particle velocity of the foam were measured
by a microphone and a laser Doppler vibrometer respectively.
An optimisation algorithm has been used to deduce the foam
parameters by minimising the difference between the mea-
sured A-F coupling transfer function and the model calcula-
tion based on the Biot poroelasticity theory and a wave prop-
agation model incorporating the Sommerfeld integral formu-
lation. The deduced parameters are flow resistivity, tortuosity
and two independent complex elasticity coefficients. A set
of parameters has been found to produce reasonable agree-
ment between the measured and the simulated A-F transfer
functions for a partially-reticulated foam. Further work will
extend the approach to a multi-layered foam.
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