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This paper describes a technique based on Multiresolution Analysis (MRA) of the wavelet transform. This 
technique is applied for decomposition of the original acoustic signal backscattered by a thin tube. The 
Multiresolution technique was used as a tool to filter the wave modes contained in the original signal. The time-
frequency representation using the Smoothed Pseudo-Wigner-Ville (SPWV) distribution is applied on the 
decomposed acoustic signal. The results obtained show that this technique of decomposition can identify not 
only single circumferential wave mode but also multimode effectively. This methodology permits to obtain the 
interesting results. 

1 Introduction 
The present paper is specially concerned with the 
application of the Multiresolution analysis of the wavelet 
transform on the acoustic signal backscattered by a thin 
tube, The MRA concept was initiated by Meyer [1] and 
Mallat [2-3], which provides a natural framework for the 
understanding of wavelet bases. The wavelets transform are 
essentially applied to extract information and as a basis for 
signal representation. The choice of the basis function 
determines the information to be extracted from the process 
and allows the study of different signal structures, such as 
non-stationary short-variation transient components. The 
process representation using wavelets is provided by a 
series expansion of dilated and translated versions of the 
basis function, also called the “mother” wavelet, multiplied 
by appropriate coefficients [2,4-5]. For processes with the 
wavelet transform gives an approximation to the original 
signal. 

In this work we explore the potential of Daubechies 
wavelet Multiresolution analysis for analysis and 
information extraction from an acoustic signal [6]. The 
main scientific objective of the work is to examine the 
Daubechies wavelet representation as a matching filter for 
to extract characteristics of interest such as identification of 
the circumferential waves. The wavelet coefficients are 
obtained from the high-pass and low-pass filter, The two 
filters are iteratively applied from the finest to the coarsest 
scales to estimate the wavelet coefficients 

 

2 Acoustic scattering by an elastic 
tube  

2.1 Complex backscattering pressure by 
a tube  

The study of the acoustic scattering by targets of simple 
geometrical shape is the object of many works [5,7-10]. In 
this paper we will use a plane harmonic wave incident on 
an infinite tube of radius ratio b/a with an air-filled cavity 
(Fig. 1). The mathematical approach of impulse response of 
tube is based on the Rayleigh series formations that consist 
in the decomposition of the backscattered pressure field 
into infinite sum of modal components, depending on both 
the mechanical proprieties and the geometry of the target. 

The general geometry for the backscattering of a plane 
wave by a tube is illustrated in figure 1. 

 

Figure 1: Geometry of the problem. 

 
The backscattering complex pressure in far filled of the 

cylindrical shell immersed in water (Fig. 1) is given by the 
expression [7]. 
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Where ω is angular frequency, k=ω/c is the wave 

number with respect to wave velocity in the external fluid 
and c is the velocity of sound in water. P0 is the amplitude 
of the plane incident wave and r is the position of the 

receiver. ( )nD ω  and 
[ ]1 ( )nD ω  are determinants computed 

from the boundary conditions of the problem (continuity of 
radial stress  and displacements of both interfaces). 

1 ( )nH kr is the Hankel function of the first kind. 
The figure 2 illustrates the theoretical backscattering 

spectrum of an air-filled Aluminium tube immersed in 
water; this spectrum is obtained theoreticaly by the 
expression (1). 

This spectrum is presented in function of the 
dimensionless frequency ka (without unit) witch defined by 
the expression below [7,11] : 
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2.2 Temporal signal backscattered by a 
tube  

The backscattering spectrum in figure 3 shows the 
presence of a continuous level on which take shape abrupt 
transitions corresponding to resonances.  

  The time signal ( )s t  of a tube is calculated by the 
inverse Fourier transform of the backscattering spectrum. 
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Where ( )h ω  is the band-pass of the transducer.  
To obtain the resonance spectrum; (i) in first time a 

theoretical temporal signal is calculated  from the 
backscattered spectrum with an inverse Fourier transform, it 
corresponds to the time signal observed when the tube is 
excited with a broadband impulse (Fig. 3); on this time 
signal, various echoes related to the circumferential waves 
are observed, (ii) in second time the specular echo related to 
the reflection on the tube is suppressed with a Personal 
Computer and replaced by zeroes (Fig. 3); (iii) in third time 
a new Fourier transform is applied to the filtered time 
signal.  
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Figure 2: Backscattering spectrum of an air-filled aluminum cylindrical shell immersed in water, b/a = 0.95, a=3cm 
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Figure. 3: Temporal signal of an aluminum tube b/a=0.95, with suppressed specular echo. 

 

3 Multiresolution analysis and time-
frequency representation 

3.1 Multiresolution analysis (MRA) 
The most important time-frequency transformations is 

the Short-Time Fourier Transform (STFT). It uses a 
windowing technique to analyze a small section of the 
signal in discrete-time [12], but the wavelet ψ  , is a 
function used in the time scale transformations, where a 

comparison of the signal is done among a collection of 
elements where the number of oscillations remains constant 
when the time support (time where mother wavelet is 
defined) decreases. This function is dilated with a scale 
parameter a, and translated in time by b. These scaling and 
translations produce a collection of functions denoted by  
[2,4-6] :  

,
1( ) , , , 0a b

t bt a b a
aa
−⎛ ⎞ψ = ψ ∈⎜ ⎟

⎝ ⎠
� f            4) 

, ( )a b tψ is defined as a continuous wavelet, which is 

derived from a mother wavelet ( )tψ . 
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The Continuous Wavelet Transform (CWT) is obtained 

by computing the correlation of the signal x(t) and the 

scaled and translated mother wavelet ( )tψ : 
1( , ) ( ) t bWT a b x t dt

aa
+∞

−∞

−⎛ ⎞= ψ⎜ ⎟
⎝ ⎠∫                 (5) 

CWT, just as STFT, transforms one-dimensional 
information contained in a signal into two-dimensional 
plane. This means that there are redundant information 
contained in the time-frequency plane. The best sampling of 

the CWT is determined by the coefficients ( , )WT a b  that 
allow a perfect reconstruction of the signal x(t). This perfect 
reconstruction is obtained by [2-3] : 

2 ; 2 ,j ja b k with k j= = ∈�  
This sampling creates a plane called dyadic and 

introduces the Discrete Wavelet Transform (DWT) defined 
by:  

, ,( , ) ( ) ( )j k j kDWT j k c x t t dt
+∞

−∞
= = ψ∫             (6) 
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The definition of the MRA is given by [2-3]: a sequence 

{ }jV
 of closed subspaces of 

2 ( )L R  is a Multiresolution 
Analysis if the following properties are satisfied: 

• 
2( , ) , ( ) ( 2 ) ,j

j jj k x t V x t k V∀ ∈ ∈ ⇔ − ∈�
a

ny translation of a function belongs to the same 
space. 

• 1, ,j jj V V+∀ ∈ ⊂�
 the subspace embodied 

at level j+1 is contained in the last subspace j. 

• 
1, ( ) ( ) ,

2j j
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 it 

denotes that 1jV +  consists of all rescaled 

functions in jV
. 

• 
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V V+∞
=−∞→+∞
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 the intersection at 

all subspaces is { }0 . 

• 
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= =I �
 

the union of all subspaces creates 
2 ( )L � . 

• There exist 0Vϕ∈   such that 
{ }( ),t n nϕ − ∈�

 is a Riesz basis of 0V , 
which contains the approximation at level 0. 

 

3.2 Smoothed Pseudo Wigner-Ville 
distribution  

Wigner-Ville distribution (WV) is a time-frequency 
analysis method which interprets a given signal in time 
domain and frequency domain synchronously. It can exam 
how frequency content changes as a function of time, and 

the output of the distribution is the energy intensity of 
various frequency components of the signal at given points 
in time. Because of the existence of the nonzero 
interferences term in WV which are bad for the explanation 
for the results, in practice, it could be replaced by smoothed 
pseudo Wigner-Ville distribution (SPWV), in which some 
window functions are convolved with WV to restrain and 
decrease the effect of the interference terms. Supposing x is 
the time domain signal, then SPWV of x is given by [5,13]: 

 
2

* 2( , ) ( ) ( ) ( ) ( )
2 2 2

i t
xSPWV t h gt u xu x u e d+∞ +∞ −

−∞ −∞= − + −∫ ∫ πντ τ τν τ (7) 

 
where x* is complex conjugate of x , h and g are time 

and frequency smooth window function respectively. 
 

4 Results and discussion 

4.1 MRA of the acoustic signal 
backscattered by a thin tube  

 
The most important aspects of the Multiresolution 

analysis is that the detail to Discrete Wavelet Transform. It 
means that the decomposed acoustic signal at different 
scales, by the Multiresolution analysis, contains necessary 
information to determine the important parameters 
presented in the original acoustic signal. 

4.1.1 Application of MRA on the original 
signal 

 
The high-pass and low-pass filters of the Daubechies 

wavelet transform in the order 8 are applied to the current 
signal. The coarsest level of the decomposition analysis is 
the order three. The temporal series correspond to 
approximation and to detail coefficients are illustrated in 
the Fig. 7. In the anther hand, the acoustic signal is 
successively convolved with the two filters low and high 
frequencies. Each resulting temporal signal is decimated by 
suppression of one sample out of two. The low frequency 
signal is left, the high frequency signal is right. 
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High-pass
filter

Low-pass
filter

signal
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Figure. 4: Decomposition, approximation and detail of 

the signal.  
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Figure. 5: wavelet decomposition of signal of 3 levels.  

 
The approximation is the high-scale, low-frequency 

components of the signal. The details are the low-scale, 
high-frequency components. The filtering process, at its 
most basic levels, is given in Fig. 4. 

The original signal, pass through two complementary 
filters and emerges as two signals: signal approximation 
“A” and signal detail “D” (Fig. 4). 

The decomposition process can be iterated, with 
successive approximation being decomposed in turn, so that 
one signal is broken down into many lower-resolution 
components. This is called the wavelet decomposition (Fig. 
5). 

 

4.1.2 Time-frequency images of the composed 
original signal 

 
The filter bank associated with the multiresolution 

analysis are shown in the Fig. 6 for the scale level j=1. The 
first signal corresponds to the original acoustic signal, the 
left temporal signal correspond to the approximation 
coefficients Ap1 (low frequency) and the right temporal 
signal series correspond to the detail coefficients (D1) (high 
frequency).   
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Figure. 6: Filter bank associated with the Multiresolution analysis, approximation coefficients Ap1 (left) and Detail 
coefficients D1(right) with the scaling function and the Daubechies wavelet the order 8 

 
The original acoustic signal undergoes with a high-pass 

and a low-pass filters (filter bank), resulting the 
approximation Ap1 and the detail D1 corresponds to low 
frequency signal and the high frequency signal respectively 
Fig. 6A1 and Fig. 6D1  .  The SPWV time-frequency 
method is applied on the approximation Ap1 and the detail 

D1 (level 1), the time-frequency images are illustrated in 
the figure 8. According to obtained images of the SPWV 
(Fig 7a and 7b), the low frequency signal corresponds to 
Scholte wave (A) and shell waves (S0, A1) (Fig. 7a), the 
reduced frequency scale ka in which the Scholte wave A 
appears is 0 < ka <25, the symmetric circumferential wave 
S0 is 26 < ka < 120 and the antisymmetric circumferential 
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wave A1 (Fig. 7b) is 132 < ka < 210. The high frequency 
signal corresponds to symmetric circumferential waves (S1, 
S2) and the antisymmetic circumferential wave A2, the 
reduced frequency scale ka in which the S1 and S2 waves  
appear is 250 < ka <380 and the range of the reduced 

frequencies corresponding to the wave A2 is , the 
symmetric circumferential wave S0 is 26 < ka < 130. 

The synthetic time-frequency images ensure that the 
approximation Ap1 behave the Scholte (A), S0 and A1 
waves and the signature temporal corresponding to the 
detail D1 behave the S1,S2 and A2 circumferential waves. 
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Figure. 7 : SPWV images of the approximation Ap1 (a) and the detail D1 (b) 

5 Conclusion 
This paper describes a methodology on Multiresolution 

analysis of the wavelet transform in mode identification of 
circumferential acoustic wave. The theoretical signal were 
carried out on the aluminium thin tube with a radii ratio 
b/a=0.95. The results have shown that the Multiresolution 
analysis and the time-frequency method of SPWV could be 
used to identify the circumferential acoustic waves in the 
tube not only single mode but also multimode 
circumferential waves effectively and the results of 
identification using these two methods are consistent. 
Finally, this methodology permits to obtain the interesting 
results.  
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