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The purpose of this study was to predict the failure of composite materials by developing and evaluating an artificial
learning algorithm that could predict their life time. This will be done by predicting whether a specimen will break
within 30 seconds or not. Specimens were tested according to the creep test by the traction method. Naive Bayesian
classifiers have been developed retrospectively in a group of 90 samples and tested prospectively in a group of
30 samples to evaluate and ensure the performance of this learning method. Each sample was characterized by
a number of relevant parameters. By testing on the group of 30 samples, we have got the best result with a
sensitivity of 90% and a specificity of 94%. The mean area under the ROC curve (Receiver Operating Curves)
reached 0.92. The study can be regarded as a very important step in the term of prediction of composite material
time life remaining.

1 Introduction
Manufacturers are increasingly using composite materi-

als in various fields, especially in aviation and automotive
industries. Their great advantage is their strength and stiff-
ness associated with their lightness. However, several studies
are needed to ensure proper use of these materials (types of
damage over time, the prediction of their lifetime).

Creep experiments, also known as “static fatigue”, is the
progressive deformation of a material under constant load.
With this method each sample test had a different break-time.
Our study focuses on evaluating if a composite material will
break in a lapse of time: we choose 30 seconds. Mean-
while recent studies [1, 2], have suggested a new approach
involving non-invasive testing to study the rupture of com-
posite materials through the phenomena of phase transitions
in the creep method. In this perspective, Nechad et al. [1]
analysed the evolution of acoustic emission [3, 4] through-
out the primary, secondary, and tertiary phases of creep ex-
periment while using polyester matrix composites reinforced
with fiberglass. They even have proposed a correlation be-
tween acoustic emission during primary/secondary transition
time, corresponding to the minimum deformation rate, and
rupture time of the material. But this method was difficult to
apply to our study since the minimum deformation rate was
hard to determine.

We have used fibreglass material , it was the first modern
composite and is still the most common. It makes up about
65 per cent of all the composites produced today and is used
for boat hulls, surfboards, sporting goods, swimming pool
linings, building panels and car bodies.

The first part of this paper details the materials and tests.
The second part concerns the data that were collected. The
third part deals with the methods that were used. The fourth
part concerns the results and the discussion. Finally, the con-
clusion and the perspectives are given.

2 Materials and Test Results

2.1 Materials
The studied materials were manufactured by moulding

composite cross vacuum at the Acoustic Laboratory of the
University of Maine, Le Mans, France. They were laminated
by stacking up 8 plies, reinforced by unidirectional glass
UDG with mass flux 300 (g/m2) and epoxy resin SR 1500
/ SD 2505. These components are manufactured by the com-
pany SICOMIN. The plies were laminated and impregnated
at room temperature, then placed empty with a depression
of 30 kPa vacuum for 8 hours between the mould and the
mould cons, followed by polymerization of 8 hours at 80°C

in an electric oven [5]. The cuts were made using a diamond
blade saw.

2.2 Creep experiment
To determine the lifetime of the tensile specimens, a set

of tensile tests were performed. The specimen dimensions
reached 2 x 20 x 300 mm. Tests were conducted on an
INSTRON type machine equipped with a cell load of 100
kN and controlled by computer (figure 1). A two channels
EPA Acoustic Emission device was used. AE (acoustic emis-
sion) measurements were achieved by the means of two res-
onant Micro-80 sensors with a frequency band 100 kHz - 1
MHz and a peak of resonance around 300 kHz, coupled on
the faces of the specimens with silicone gel. The calibra-
tion of each test used a pencil lead break procedure in order
to generate repeatable AE signals. Several time-based de-
scriptors were calculated by the acquisition system for each
AE event: amplitude, energy, duration, rise time, number of
times the amplitude of the event goes beyond the given am-
plitude threshold (called counts)... These parameters were
used as input descriptors in the proposed classification method.
Traction test was applied on the specimens with 30 kN of
strength. However creep method was based, in first time, on
traction method by applying 90% of strength and then wait-
ing until fracture.

Figure 1: system schema

2.3 Acoustic Emission Activity
The acoustic emission is a phenomenon of liberation of

elastic energy in the form of transient elastic waves in a ma-
terial with dynamic processes of deformation. When sub-
jected to external stresses, composite materials undergo var-
ious types of degradation resulting from local damage at the
matrix, fiber and fiber-matrix interface. Generally, these mech-
anisms occur simultaneously, thereby reducing the mechan-
ical properties of composite material. Degradation mecha-
nisms are developed according to the nature of materials and
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mechanical stress conditions imposed. In a composite
material, the stress redistribution, and consequently the rup-
ture process resulting, depends principally on the fiber’s crack
characteristic, the ability of the matrix to absorb the energy
released, the interface properties of fiber-matrix, the fraction
volume of fiber, and the conditions of mechanical stress im-
posed.

The activity of acoustic emission collected during the creep
experiments on the specimens was studied through the num-
ber of signals collected over time. Figure 2 shows that the
acoustic activity during a creep test has 3 phases:

Phase 1: a dramatic increase of acoustic emission since
the beginning of the tests, it corresponds to an introduction
and multiplication of micro-cracks within the specimen.

Phase 2: during this phase, the acoustic activity is low,
it’s due to the propagation of the micro-cracks, and it corre-
sponds to a large period of specimen life-time.

Phase 3: finally in the last phase, the acoustic activity be-
comes very significant with high energy and high amplitude.
This phase corresponds to the rapid spread of micro-cracks
thereby generating a more localized cracking, causing rup-
ture of the specimen.

Figure 2: creep test typical form

3 Data and concept of salves selection
Six tensile specimens have been tested with creep exper-

iment. We got six different rupture times (539.42 s, 159.26
s, 3362.42 s, 130.36 s, 1831.94 s, and 845.84 s). Each test
conducted to obtain thousands of salves. An example of one
burst is shown on (figure 4 ). From these thousands bursts
we have only used 20; 10 bursts were selected in the 30 sec-
onds interval before the rupture point, and the others were
randomly selected outside the last 30 seconds interval (figure
3). In total we have selected 120 bursts among which 50%
are within a rupture period. For each signal we used three
parameters:

• Burst Duration : it corresponds to the time between the
first and the last threshold crossing.

• Number of Peaks : it is the number of threshold cross-
ings over the duration of the signal.

• Amplitude, its unit is the decibel (dB):

A = log
(

V(t)
1µV

− (preampGain)
)

Preamp Gain is the value of gain of pre-amplifier’s trans-
ducers EA [6] (fixed to 40 dB in our study). V(t) is the volt-
age detected. The value of amplitude bursts retained by the
purchasing system is the maximum peak amplitude obtained
for the maximum voltage Vmax detected. The distribution of
the amplitudes of bursts covers the range 10-100 dB (0 dB
corresponds to 1 µV at the out of the Transducer).

The output data (rupture or not) consisted of a binary vari-
able representing whether each selected signal is within the
30 seconds interval before the rupture time or not.

Figure 3: concept of salves selection

Figure 4: parameters description of salves

4 Naive bays classifiers
The method of naive Bayesian classifiers was used. This

type of statistical classifiers can predict the probability that a
given sample belongs to a particular class [8]. The Bayesian
classifiers are based on Bayes’ theorem. The naive Bayesian
classifiers assume that the effect of an attribute on a given
class is independent of other attributes. This assumption is
called class conditional independence, it simplifies the com-
putational complexity and, in this sense, is considered as
naive.

4.1 Prediction by naive bays classifiers
The probabilistic classification method is simple, it is re-

lated to the theorem and the Bays decision rule [8]. This clas-
sifier assumes independence among variables, thus, greatly
simplifies the determination of probabilities. In fact, consid-
ering there are k classes, C1,C2, . . . ,Ck. P(X|C j) the proba-
bility of each class is estimated from the univariate densities
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P(Xi|C j), i = 1, . . . , p. This is interesting, because it involves
the estimation of individual variable p, so in one dimension,
thereby avoiding the "curse of dimensionality". The prob-
ability associated with each class P(X|C j) is then estimated
by

P
(
X|C j

)
=

p∏
i=1

(
P

(
Xi|C j

))
Once the estimated probability, we still have to determine

the a posteriori probability P(C j|X), for assigning an obser-
vation to classes following the Bays’ theorem.

4.2 Performance measure
The 120 samples included in this study were divided into

two groups. The first group of 90 samples is named the learn-
ing set. This set was used to build and determine the best ker-
nel adjustment of variables for a naive bays classifier. The
samples in the second group (30 samples, named test set)
were only used to estimate the performance of selected sub-
sets. Thus these test data are not employed in the feature
selection phase and adjustment of naive bays learning pro-
cess. The learning set and the test set were built with 50% of
samples that are within a rupture period, randomly chosen.

To evaluate the performances of the prediction, sensitiv-
ity and specificity were used. Both characterize the percent-
age of good samples classification. To compute the percent-
ages of sensitivity and specificity, we used:

Sensitivity = 100 ∗
(

T P
T P+FN

)
Specificity = 100 ∗

(
T N

T N+FP

)
N is the total number of samples, TP is the number of

true positives, TN is the number of true negatives, FN is the
number of false negatives, and FP is the number of false pos-
itives.

An essential condition must be followed for accurate esti-
mation of the sensitivity and specificity values: the distribu-
tion of break and non-break items must be significantly bal-
anced. With a manual selection, we had a prevalence of 50%,
therefore the condition of balancing was satisfied. The ROC
curves (Receiver Operating Characteristic) [7] were used to
find the best architecture by plotting sensitivity and 1-specificity.
The area under the ROC curve (AUC: Area Under the Curve)
can be interpreted as the test accuracy: the higher the area,
the higher the accuracy [10, 11].

To estimate the generalization error, we used a K-fold
cross-validation [10, 11] (K = 5). This technique allows to
give an estimation with a small bias and a small variance.
Thus, the learning data set was randomly divided into K sub-
sets (K-folds) of equal size. The classifier was trained on
K−1 subsets, then the validation performances were mea-
sured by testing the subset that was not used during the learn-
ing phase. This process was repeated K times by using a dif-
ferent subset to estimate the validation. Therefore, the per-
formance of the classifier was obtained by averaging the K
AUCs. For each ROC curve, the best sensitivity and best
specificity were computed by the minimization of the quan-
tity : √([

1− sensitivity
100

]2
+

[
1− speci f icity

100

]2
)
.

5 Results and discussion
This study aimed to predict whether a tensile specimen

will break in 30 seconds or not. The Bayesian classifiers
were trained in a retrospective group of 90 samples and tested
prospectively in a group of 30 samples. The results are pre-
sented in Table I and Table II, where 4 means that a variable
was not selected; 1, 2, 3 represent the selection of the first pa-
rameter (number of peaks), the second parameter (signal du-
ration), and the third parameter (amplitude). As shown in Ta-
ble 1, the best performance in the training set has reached an
average K-AUC of 0.86. In the prospective test we achieved
a sensitivity of 90% and a specificity of 94%.

Table 1: K-cross validation results in the learning set

Selected Sensitivity Specificity AUC
variables (%) (%)

1, 2, 3 78 ± 2.19 82 ± 3.36 0.86 ± 0.086
1, 2, 4 74 ± 3.25 77 ± 2.18 0.79 ± 0.054
1, 4, 3 76 ± 1.35 81 ± 3.51 0.84 ± 0.092
4, 2, 3 75 ± 1.86 79 ± 3.33 0.81 ± 0.076

Table 2: K-cross validation results in the learning set

Selected Sensitivity Specificity AUC
variables (%) (%)

1, 2, 3 90 94 0.92
1, 2, 4 88 92 0.89
1, 4, 3 89 93 0.90
4, 2, 3 86 90 0.88

It could be surprising that the performances in the final
test set are higher than the performances of the K mean sen-
sitivities and specificities in the learning set. Therefore, we
could be worried with the generalization aspects of the learn-
ing machine. Two answers can be given to this question: the
final ROC curve that is shown on figure 5 seems to be able
to give good generalization possibilities because it is signifi-
cantly round (of course, this curve has not been used to com-
pute the sensitivity and the specificity in the final test set).
The second point concerns the fact that, the final learning
machine is trained on 90 samples while the cross-validations
could only take 72 samples for each of the K learning pro-
cesses, therefore the naive bays classifier could have learned
better.

Those results are very interesting because they are a first
significant step in the lifetime prediction of material rupture
before significant damages can occur.

6 Conclusion
This study has taken a step in the direction of prediction

creep material rupture. Thus, the three indexes (Number of
Peaks, Signal Duration and amplitude) introduced in a naive
bays classifier could reliably predict material rupture with
88% of sensitivity and 92% of specificity in a prospective
group of 30 samples. Further research in this area could
include the addition of several parameters as inputs to the
Bayesian classifier, and predict which phase a burst belongs.
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Figure 5: final ROC curve on the test set
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