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Sensitivity of nonlinear acoustic methods to the presence and the evolution of micro-damage has been proven in 
various studies on a wide range of materials (composites, concrete, rocks, etc.). This sensitivity is due to the 
relationship existing between the elastic properties of the above-mentioned materials and the created strain 
during the passage of the acoustic disturbances. Single mode nonlinear resonance experiments were proposed to 
explain the decrease in resonance frequency as well as the quality factor as a function of the dynamic strain. 
Thereby, the hysteretic parameters corresponding to the elastic modulus as well as damping are determined for a 
single frequency. In this work, we propose a guided wave approach to characterize GFRP composite samples 
taken at intact as well as damaged states. The changes in the nonlinear hysteretic parameters are observed by 
changing the order the excited bending resonance. In addition, the velocity dispersion of the generated guided 
waves (flexural waves) has also been determined and followed at different strain levels.

1 Introduction 
Nonlinear acoustics methods are in intense development 

for nondestructive testing and evaluation on a wide range of 
materials (composites, concretes, rocks, bone, etc.) [1-4]. 
These methods present a high sensitivity compared to linear 
methods (velocity, attenuation). Indeed, damaged materials 
and consolidated heterogeneous materials, exhibit a linear 
or classical nonlinear behavior involving quadratic and / or 
cubic elastic parameters, which are considered in the 
context of the elasticity theory of Landau, as long as they 
are excited at low strain rates. At higher strains (above ~10-

6) these materials are non classical nonlinear and exhibit a 
“new” behavior usually considered as an out of equilibrium 
state [5-8]. Considering this non-classical behavior, 
different works were conducted  in order to understand it, 
including nonlinear resonances, harmonics generation, self 
demodulation, transfer of modulation, self-action, etc. [9-
11]. It has been then observed that nonlinear parameters are 
more sensitive to the presence of damage than linear elastic 
parameters especially at early damage states. In resonance 
experiments, two hysteretic nonlinear parameters are 
assessed from the downshift of the resonance frequency 
α f as well as the diminution of the quality factor αQwith 
increasing strain amplitude. These hysteretic parameters are 
often considered in the case of a single resonance mode 
neglecting the possibility of having any dispersion when 
higher order resonances are involved. The purpose of this 
paper is to report an experimental method which describes 
the dispersion of the nonlinear hysteretic parameters in the 
case of bending waves and guided waves propagating in 
GFRP plates taken at intact and damaged states [12]. 
In the first section, we recall the theory of bending waves. 
Then, the useful principles of nonlinear elasticity of micro-
damaged materials are presented. Finally, the studied 
materials and the experimental procedure are described and 
right before the experimental results.  

2 Theory of flexural and guided 
waves 
 

The equation of transverse motion resulting from a 
bending action is based on the Euler-Bernoulli classical 
beam theory [13-15]. The governing equation is written in 
this form 
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Euler-Bernoulli beam theory admits two important 
approximations: (a) the deformations of the cross section 
due to the shear and rotary-inertia effects are neglected, and 
(b) applying the method of separation of variables to find 
the arrow. To do this, we assume that the motion is 
harmonic (sinusoidal in the time) 
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               V(x): is the amplitude of vibration along axis x.  
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The dynamic beam equation (1) becomes   
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The differential equation giving the amplitude of the 
deformation V(x) at angular frequency w is given by 
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The amplitude equation is given by the solution of 4th order 
differential equation. It can be therefore written in this form 
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βi is the wave number, E, ρ, et S are respectively the Young 
modulus of the material, the density of the material and the 
air of the cross section of the bending beam. The moment 
of inertia of the section S, is:    
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There are an infinite number of values that allow βi 
responding to the solution of the system. Each value βi 
(i=1,2,3,4) corresponds to a vibration mode. 
The natural frequencies (resonance frequencies) are 
obtained from the wave number. It is a question of 
imposing on the model of the beam (equation of amplitude) 
the conditions which correspond to the generated physical 
effect [13]. 
The appropriate frequency of every mode of flexion is 
given by this relation:  
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αi=βi L are the roots of the equation for eigenfrequencies 
(Eq.11) defined by the boundary conditions in the case of a 
beam with free ends, L is the length of the beam.  
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The bending wave velocity is given by: 
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This equation shows the dispersive nature of bending wave 
(the flexural wave velocity depends on its frequency). 
Flexural waves can also be described by a more advanced 
theories, such as Rayleigh theory or Timoshenko beam 
theory. Timoshenko model incorporates both the rotary-
inertia and shear deformation that affects the natural 
bending frequencies. These two effects tend to reduce the 
resonance frequency calculated due to the growth of the 
inertia and flexibility of the system. Then the governing 
equation of motion developed by Timoshenko [17-20] 
given by:  
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But, if the effect due to the shear distortion is the neglected, 
the Rayleigh beam equation [21] arises: 
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When we compare the values of wave velocity resulting 
from different theories Bernoulli, Timoshenko and 
Rayleigh as a function of the wave number (see figure 1), 
we note that for these three models, the values of bending 
speed are equivalent for small values of wave number. Thus 
the use of one of these theories to plot the dispersion curves 
of flexural at low frequency is the same. The literature 
shows that it is possible to generate an anti-symmetric 
Lamb mode A0 from bending waves for low frequency 
values in isotropic structures such as aluminum. 
 

 

Figure 1: Dispersion relations from Timoshenko, Rayleigh 
and Bernoulli-Euler beam theories. 

We superimposed the dispersion curves of flexural waves 
and Lamb waves in the case of polymer based composite 
with 2.52mm thickness. Indeed, Figure 2 shows that these 
two types of waves have the same phase velocities for 

frequencies below ~29 KHz. This value corresponds to the 
frequency of separation of both waves.    
  

 

Figure 2: Dispersion curves of the bending waves and 
Lamb waves for a polymer based composite thickness 

2.52mm. 

3 Nonlinear dynamic elasticity: 
definition of hysteretic parameters 
 

The behavior of nonlinear mesoscopic elastic materials 
is described in many articles [22-26]. Recent experiments 
performed on rock samples showed that for low strain 
amplitudes (10-6 and lower), nonlinear mesoscopic elastic 
materials behave classically [27]. However, for strain 
amplitudes greater than 10-6, the classical theory of 
nonlinear elasticity [5] is unable to describe the elastic 
behavior of nonlinear mesoscopic materials [28,29]. 
Microcracks, mesoscopic flexible inclusions in a matrix, 
etc. are responsible of the nonlinear behavior due to the 
presence of discrete memory and hysteresis in the stress-
strain relationship. The physical mechanisms underpinned 
are not yet fully understood but Guyer and McCall 
proposed a phenomenological description of these non 
linear effects [30, 31], considering the material as a set of 
hysteretic units that can have only two stable states: open 
unit and closed unit. Each hysteretic unit can be described 
by two pairs of variable: ),( c0 σσ  and ),( 0 cεε  are 
respectively the stress and strain in the closed and open 
states. Hysteretic units can be recorded in the space of 
Preisach-Mayergoyz (PM space), which keeps track  of the 
status (open, closed) of all hysteretic units. Knowing the 
history in PM space allows establishing the equation of 
state [31, 32]: 

                   σ = K(ε, &ε)∫ dε                                               (15)          
 

σ is the stress, ε is the strain is the strain rate and K is the 
elastic modulus of the material. 
 
From the equation 15, we can have the expression of the 
elastic modulus of the material, by calculating the mean 
modulus on a cycle: 

        ),(...)1( 2
0 εεαδεβε &−+++= KK              )16(  

where, K0 is the linear elastic modulus, ε  is the induced 
strain, β  and δ  represent the classical quadratic and cubic 
nonlinear parameters, respectively, which can be developed 
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as a combination of second, third, and fourth order elastic 
constants [5, 33], α is the nonlinear hysteretic parameter.  
In Eq. (16) classical and hysteretic nonlinear behaviors are 
clearly differentiated. Indeed in the case of nonlinear 
hysteretic material, Eq. (16) shows that at a certain level of 
deformation the elastic modulus K begins to decrease. 
A decrease in the compression modulus generates a 
decrease of resonance frequency, and hence a decrease of 
the flexural wave velocity or lamb wave velocity VA0. The 
flexural wave velocity is written in the case of nonlinear 
hysteretic material as:  
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In recent simulations, we have proved that Young modulus 
can be kept constant in the fourth root of the equation and 
the change in velocity is mainly due to the resonance 
frequency.

 
 

In most of the experimental observations, the hysteretic 
nonlinear behavior observed at strain amplitudes above 
approximately 610−≈ε  during nonlinear resonance 
experiments exhibits the same trends [34]. Two parameters 
are defined in the literature corresponding to the 
proportionality coefficients. The parameter of hysteretic 
elastic nonlinearity fα  is such that 
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Where )( Af ε the resonance frequency at the detected 
amplitude Aε , 0f is the resonance frequency at infinitely 
low strain amplitude and fΔ is the shift of the resonance 
frequency caused by the increasing strains. 
The parameter of hysteretic dissipative nonlinearity Qα is 
defined as: 
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where, 0Q is the quality factor of the resonance at infinitely 
low strain amplitude and )( AQ ε the quality factor at strain 
amplitude Aε . When the parameter α is determined for 
different types of resonant modes (compression, bending), 
we still need to know it changes as a function of the applied 
frequency. In this work, we propose a general experimental 
method to identify and track the hysteretic nonlinear 
parameters related to the bending modes in the case of a 
polymer-based composite. This was done under guided 
waves conditions.  

4 Polymer based sample and 
damage 
 

The studied composite is a glass fiber reinforced 
polyester resin, whose fibers are all oriented in the direction 

1ev  (see figure 4). The mechanical properties of the laminate 
beam of length 180mm, width 20mm and thickness 
2.52mm are given by the table1. 
 

 

Figure 3: Elastic behavior of hysteretic nonlinear materials: 
(Ι) linear elastic range, (ΙΙ) classical nonlinear elastic range, 

and (ΙΙΙ) hysteretic nonlinear elastic range   

 
Table 1: Mechanical properties of the unidirectional 
composite. 
 
 
 

 
 
 

 

Figure 4 : Axes of the transverse isotropic composite. 

In this work we are interested in the characterization of the 
material in the intact and damaged state. The composite is 
damaged with a classical quasi-static three point bending 
technique. In this case, the created damage can be a fiber 
breakage, fiber/matrix debonding, and matrix micro-
cracking (see figure5). 
 

 

Figure 5 : The three main types of damage the composite 

Resonance experiments are carried out on the same sample 
in order to follow the effect of damage on the excited 
resonance bending modes. 
 
5 Experimental device and linearity 
study 
 

The schematic of the experimental set-up is presented in 
figure 6. It allows to determine the phase velocity 
dispersion curves of antisymmetric Lamb mode A0 at the 
intact and damaged states. Besides, it allows following the 
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evolution of these phase velocity dispersion curves as a 
function of the induced strains.  
 

 

Figure 6: Experimental setup used for nonlinear 
measurements 

A gain-phase analyzer Stanford Reasearch Systems SR785 
generates a swept-sine signal defined by a start and end 
frequencies ranging from 1 KHz to 20 KHz. The excitation 
signal is then amplified at a constant rate 46 dB using a 
wideband power amplifier (10KHz-10MHz) to excite the 
piezoelectric emitter transducer attached at the extremity of 
the composite plate to generate the desired vibrations. At 
the other extremity another PZT transducer having the same 
properties is used to receive the acoustic signals. The 
experimental configuration and the sample plate-like 
geometry (180*20*2.52 mm) favor the generation of 
bending resonance modes. The sample is excited around 
resonance bending modes at intact as well as damaged 
states using excitations from 10 mV to 640 mV, before 
amplification. In view of the experimental configuration 
one can only generate a single Lamb mode, which is the 
antisymmetric fundamental mode A0 obtained on the base 
of bending waves.  

The follow-up of the evolution of the transfer function 
of the PZT ceramics over the used frequency range, to 
excite amplified resonances (Figure 7), shows that the 
response of PZT on the material is linear. Consequently the 
experimental setup is linear. 

 

Figure 7 : Frequency response of the used piezoceramic in 
amplified conditions 

 
6 Experimental results 
 

6.1  Résonance non linéaire hystérétique 

When the excitation is increased, we observe a 
nonlinear hysteretic behavior. The obtained set of 
fundamental resonance curves shows the existence of ten 
bending modes, where the resonance peak amplitude is 
expressed in terms of strain amplitude. These curves 
provide the hysteretic parameters fα  and Qα  that 
correspond to the slopes of the relative frequency shift 

0/ ffΔ  and the change in inverse quality factor ( )Q1Δ  
(Table 2). The latter shows that these two parameters 
depend on the frequency thus the parameter α related to 
the resonance curves is dispersive. 
Table 2: Evolution of hysteretic parameters fα , Qα  of the 

polymer-based composite as a function of frequency 
 

 
It should be noticed that αf undergoes a significant 

change as a function of the frequency, as it changes by a 
factor corresponding to ~ 6. This variation is small 
compared to the one obtained for the dissipative parameter 
αQ which increases clearly from 1.3 to 162. This means that, 
depending on the frequency, Qα becomes ~ 120 times 

greater and hence changes 22 times faster than α f in the 
same frequency range.  Besides, the same set of data shows 
that it becomes difficult to draw a conclusion on the 
localization of damage as a function of nodes 
corresponding to the different flexural resonances. This 
difficulty can be observed through the different dynamics 
of both hysteretic parameters, whose evolutions are not 
monotonous as a function of the frequency. As an example, 
Figure 8 shows the positioning of the damage zone as a 
function of the generated resonances.  

 

 

Figure 8: Superposition of the stationary waves with 
damage 

One can observe that the maximum value corresponding 
to αQ happen for the 8th resonance mode. This might be 
explained by the fact that the damage area situated falls on 
the belly of the mode 8. However, if this argument is 
sufficient, one would find that αf is also maximum as the 
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positions are the same. However, this is not the case, since 
αf is maximum for the 10th order resonance mode.  

6.2  The dispersion of the guided waves  

As explained earlier, one can determine the phase 
velocity of the A0 Lamb mode on the basis of the flexural 
resonances. Such a procedure allows determining the 
nonlinear hysteretic parameter associated to guided waves. 
This parameter is obtained by extracting the slope of the 
dispersion curve corresponding to A0 mode when the drive 
is increased. Figure 9 shows the correspondence existing 
between resonances and phase velocity.  

 

Figure 9 : Dispersion curve of the fundamental anti- 
symmetric Lamb mode A0 obtained from the resonance 

spectrum of the bending waves 

We followed the evolution of the so-called speed at 
intact and damaged states as a function of the excitation 
level. We didn’t notice any shift of the slope describing the 
change in velocity as a function of frequency at intact state. 
However, as the increase in the excitation level at the 
damaged states is accompanied by a shift of the resonance 
frequency (see table 2), the phase velocity values are 
consequently affected and so the slope of the dispersion 
curves.  

If we study the evolution of each mode separately, by 
analogy with resonance experiments, we can see that it 
becomes possible to define a new dispersive nonlinear 
hysteretic parameter related to the phase velocity, called 

vα , as explained in Figure 10.  
 

                                             

Figure 10 : Determination of nonlinear hysteretic parameter 
(a) elastic from resonance curves (b) dispersive from 

dispersion curves 

The follow up of the parameter vα  as function of frequency 
at the damaged state shows that it is dispersive (see figure 
11). Its value increases from 31m-1 to 88 m-1 as a function 
of damage. However, it should be notices that it remains 
equal to zero at the intact state. 
The parameter vα becomes increasingly important as a 
function of the frequency because the higher order 
resonances experience represent a significant frequency 
shift when the drive is increased. This shift of the resonance 
frequency causes a decrease in the velocity from the intact 
to the damaged states (see figure 11). 
 

 

Figure 11 : Variation of  vα   parameter and the phase 
velocity as a function of frequency at intact and damaged 

states 

7 Conclusion and perspectives 
 
In this work, we have developed an experimental setup 

to characterize the damage generated in composite plates. 
Hysteretic parameters fα  and Qα  revealed to be 
dispersive. Therefore, one should take into account this 
important characteristic when the nonlinear behavior is 
hysteretic. This observation holds also in the case where 
harmonics generation is studied experimentally or 
theoretically. Besides, we have also proved that both 
nonlinear parameters do not manifest any monotonous 
behavior as a function of frequency. The situation of the 
hysteretic elements near a node or far from it may be give a 
partial explanation. However, we think that the problem is 
more complex as it should include other aspects such as the 
anisotropy of the hysteretic zone whose damping as well as 
elastic properties don’t seem to be symmetric as one could 
imagine. On the other side, the follow up of nonlinear 
hysteretic parameter vα  relative to the phase velocity has 
also shown that it is dispersive. Furthermore vα  offers an 
interesting opportunity to follow the evolution of hysteresis 
in guided waves conditions (dispersive waves), which can 
be in given conditions be considered as A0 Lamb wave. 
Finally, it should be pointed out that for the understanding 
of the experimental observations we need to develop a 2D 
physical or phenomenological model, in order to 
understand the mechanisms at the origin of the unexpected 
experimental observations.  
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