
Influence of model parameter variability on the
directivity filters of compact loudspeaker arrays

A. Mattioli Pasquala, M. Pachebatb and P. Herzogb

aUniversidade Federal de Lavras, Departamento de Engenharia, Campus Universitário,

37200-000 Lavras, Brazil
bLMA, CNRS, UPR 7051, Aix-Marseille Univ, Centrale Marseille, 13402 Marseille, France

ampasqual@gmail.com

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2845



Sound directivity control is made possible by a compact array of independently driven loudspeakers. Recently, a

control system for such a multi-channel source based on its acoustic radiation modes has been proposed. These

modes form an orthogonal set of velocity patterns on the source surface, and emerge from the eigendecomposition

of a free-field radiation operator that depends on frequency. Since the diaphragm velocities are driven by elec-

trical signals, each directivity filter is a set of voltages yielding a radiation mode. Moreover, these filters must

take into account the acoustic coupling between the transducers if they interact inside a hollow cabinet. Usually,

nominally identical drivers are distributed over a spherical frame in the shape of a Platonic solid, which leads to

frequency-independent radiation modes. Furthermore, if the individual drivers possess identical electromechanical

features, the directivity filters are frequency independent too. However, the electromechanical parameters of com-

mercial loudspeakers might present a significant deviation from their nominal values due to their manufacturing

process. This work discusses the effects of electromechanical parameter variability on the frequency independence

of the directivity filters of Platonic solid loudspeakers. As an example, a dodecahedral loudspeaker array, whose

parameters of the individual drivers are experimentally characterized, is investigated.

1 Introduction
A compact multichannel source made up of loudspeakers

operating at the same frequency range can be used to control

the directivity pattern of the sound field it radiates, which is

of interest in 3D sound reproduction [1] and active control

of sound [2; 3]. Usually, nominally identical transducers are

distributed over a sphere-like frame according to the regular

geometry of a Platonic solid in order to obtain a highly sym-

metrical configuration [4–7]. Besides, these compact spheri-

cal loudspeaker arrays are commonly provided with a set of

preprogrammed spatial filters that lead to far-field directiv-

ities corresponding to a number of basic radiation patterns,

such as the spherical harmonics [4–6] and, more recently,

the acoustic radiation modes (ARMs) [8; 9]. Then, differ-

ent directivities can be obtained by adjusting the gains of the

spatial filters.

The ARMs present some advantages over the spherical

harmonics, as described in Ref. [9], and form an orthogonal

set of vibration patterns on the source surface. For a general

radiator, the ARMs depend on frequency [10], but it has been

demonstrated that they are frequency independent as far as

Platonic loudspeakers are concerned [9], which greatly sim-

plifies the spatial filters. However, each directivity filter is a

set of voltages yielding a radiation mode. Moreover, these fil-

ters must take into account the acoustic coupling between the

transducers if they interact inside a hollow cabinet. There-

fore, even if the ARMs do not depend on frequency, the spa-

tial filters might do. In fact, if the individual drivers possess

identical electromechanical features, the directivity filters are

frequency independent too whether or not the transducers

are provided with their own sealed cavities [9]. However,

the electromechanical parameters of commercial loudspeak-

ers might present a significant deviation from their nominal

values due to their manufacturing process.

Although the modeling, design and control of Platonic

loudspeakers have been a research topic since the 1990’s, di-

rectivity controlled sound sources are not commercially avail-

able yet. An issue that remains unexplored is the effects of

the drivers variability on the control of compact loudspeaker

arrays. This is dealt with in this work, which discusses the

effects of electromechanical parameter variability on the fre-

quency independence of the ARM-based directivity filters of

Platonic solid loudspeakers. As an example, a dodecahedral

loudspeaker array, whose parameters of the individual drivers

are experimentally characterized, is investigated.

2 Theoretical background
Throughout this paper, a harmonic time dependence of

the form e− jωt is assumed, where j ≡ √−1, ω is the angular

frequency, and t is the time. In addition, lower case bold

letters indicate vectors, while upper case bold letters indicate

matrices.

2.1 Acoustic radiation modes
This subsection deals with the modal representation of

the free-field sound radiation from an almost spherical array

of identical axisymmetric radiators, such as the tetrahedral

array made up of L = 4 radiators depicted in Fig. 1, where

the black arrows indicate the symmetry axis of the individ-

ual radiators, the gray arrows constitute the global Carte-

sian coordinates system, and the spherical grid represents a

rigid sphere on which the radiators are mounted. In addition,

we let Sl be the vibrating surface of the lth radiator, so that

S = S1 ∪S2 ∪ · · · SL is the net vibrating surface of the source.

Figure 1: Compact spherical array made up of four identical

axisymmetric radiators in a tetrahedral configuration.

For a vibrating structure with L degrees of freedom, the

ARMs form a set of L real orthogonal vectors that span the

subspace of the achievable velocity patterns over the body

surface. They can be obtained through an eigenvalue analy-

sis of a radiation operator: the eigenvectors give the ARMs

and the eigenvalues their radiation efficiencies. The radiation

efficiency, σ, of an arbitrary radiator is commonly defined

as [10]

σ(ω) ≡ Π(ω)

ρcS
〈|vn(xs, ω)|2〉 , (1)
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where Π is the radiated sound power, ρ is the medium den-

sity, c is the sound speed, S is the surface area of S, vn is the

velocity normal to S, xs ∈ S is a point on the vibrating sur-

face of the body, and 〈·〉 ≡ (2S )−1
∫
S
(·)dxs is a spatial mean

operator.

Let u(ω) be a column vector containing the velocity am-

plitude coefficients of the L degrees of freedom of a vibrat-

ing body, so that the sound power it radiates can be written

as [10]

Π(ω) = u(ω)HW(ω)u(ω), (2)

where the superscript H indicates the complex conjugate trans-

pose and W is an L × L matrix that couples the sound power

radiated by the elements of u. From now on, the frequency

dependence of u, W and σ will be omitted for the sake of

notation convenience.

As far as a compact spherical radiator array is concerned,

the lth element of u is a reference velocity taken at a given

point in Sl. This does not mean that only piston-like mo-

tion is considered here, but that there are only L controllable

degrees of freedom. Besides, if the individual radiators are

geometrically identical and do not overlap, it can be shown

that W is a real symmetric matrix and that [9]

σ(u) ∝ uHWu
uHu

. (3)

Let ψ and λ be, respectively, a given but arbitrary eigen-

vector and eigenvalue of W. Since σ is in the form of the

Rayleigh quotient in Eq. (3), ψ is a saddle point of σ(u) and

σ(ψ) ∝ λ. Therefore, the solution of the eigenvalue problem

Wψ = λψ (4)

leads to a set of L real orthogonal eigenvectors ψ1,ψ2, . . . ,ψL

corresponding to real eigenvalues λ1, λ2, . . . , λL, where λl ∝
σ(ψl). These eigenvectors are the ARMs, which span a finite

dimension subspace on which any vibration pattern the array

is able to produce can be projected with no approximation er-

ror. Therefore, if Ψ is an L× L modal matrix whose columns

contain the radiation modes, ψl , one may write

u = Ψc, (5)

where c is a column vector of modal contributions.

The ARMs radiate sound energy independently and al-

low ranking the expansion terms by their radiation efficien-

cies. Thus, by discarding the inefficient modes, this approach

is useful in the inverse problem of determining the vibration

pattern from a known acoustical field. In addition, it leads

to a reduced number of active modes in sound reproduction

applications because it does not make sense to drive low-

efficiency ARMs. Moreover, although W is frequency de-

pendent, Pasqual and Martin [9] have demonstrated that the

ARMs of the Platonic solid loudspeakers do not depend on

frequency provided that the individual drivers of the array

give rise to axisymmetric sound fields. The modal matrices

of these arrays are explicitly given in Ref. [11]

2.2 Electromechanical modeling
The ARMs describe velocity patterns over the surface of

a vibrating body. However, as far as loudspeaker arrays are

concerned, voltages rather than velocities are controlled in

practice. Hence, it is important to determine the set of volt-

ages that leads to each ARM of the loudspeaker array, i.e.,

an appropriate transduction matrix, T(ω), must be known,

which gives the voice-coil voltages from the membrane ve-

locities according to the equation

v(ω) = T(ω) u(ω), (6)

where v is a column vector containing the voltages of the L
drivers of the array.

The vector v is obtained from the desired ARM by letting

u = ψ in Eq. (6). The off-diagonal terms of T take into

account the internal acoustic coupling between the drivers of

the array (the external coupling is of minor importance); if

each driver is provided with its own sealed cavity, the off-

diagonal entries are zero. In the following, in order to obtain

T, a lumped-parameter model of an array of electrodynamic

loudspeakers mounted on a common hollow cabinet is briefly

presented. For further details, see Ref. [7].

In the low-frequency range, an electrodynamic loudspeaker

can be modeled as a single degree-of-freedom (SDOF) me-

chanical system driven by electromagnetic and acoustic forces

[12]. The mass of the driver membrane assembly M, the me-

chanical compliance of the driver suspension C and its me-

chanical resistance R provide, respectively, the inertial, the

energy storage and the energy dissipation elements of the

SDOF system. Then, application of the Newton’s second law

yields

− jωMlul + Rlul − 1

jωCl
ul = F(e)

l + F(a)
l , (7)

where the subscript l refers to the lth driver of the array, ul is

its velocity, F(e)
l is the electromagnetic force and F(a)

l is the

force acting on the inner surface of the driver membrane due

to the internal acoustical load.

Now, let B be the magnetic flux density in the driver air

gap and le the length of the voice-coil conductor in the mag-

netic field, so that the diaphragm movement generates an in-

duced voltage given by Bleu. On the other hand, the elec-

tromagnetic force acting on the diaphragm due to the pres-

ence of an electrical current i in a magnetic field is given by

F(e) = Blei. Hence, application of the Kirchhoff’s second law

leads to

F(e)
l =

(Ble)l

R(e)
l

[
vl − (Ble)l ul

]
, (8)

where (Ble)l is the force factor of the lth driver, R(e)
l is the

electrical resistance of its voice-coil and vl is the voltage that

feeds the lth driver.

Substitution of Eq. (8) into (7) yields

⎡⎢⎢⎢⎢⎢⎣Z(m)
l +

(Ble)2
l

R(e)
l

⎤⎥⎥⎥⎥⎥⎦ ul − F(a)
l =

(Ble)l

R(e)
l

vl, (9)

where Z(m)
l = − jωMl+Rl−( jωCl)

−1 is the mechanical impedance

of the lth driver.

Now, let Vb be the net internal volume of the cabinet.

If its overall dimensions are much smaller than an acoustic

wavelength and the energy dissipation is not taken into ac-

count, the enclosure behavior can be described by an acous-

tical compliance Cb = Vb/ρc2 [13]. Therefore, one has [7]

F(a)
l = Al

L∑

l′=1

ρc2

jωVb
Al′ul′ , (10)

where Al is the net surface area of the lth driver.

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2847



Finally, it follows by inspection of Eqs. (6), (9) and (10)

that the entries of T are

Tll′ =

⎧⎪⎪⎨⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣Z(m)
l +

(Ble)2
l

R(e)
l

⎤⎥⎥⎥⎥⎥⎦ δll′ −
ρc2

jωVb
AlAl′

⎫⎪⎪⎬⎪⎪⎭
R(e)

l

(Ble)l
, (11)

where δll′ is the Kronecker delta.

3 Model parameter variability
In the deterministic model described in Sec. 2.2, each

driver of the loudspeaker array possesses 6 independent pa-

rameters, namely, M, R, C, R(e), Ble and A. Hence, 6L inde-

pendent parameters related to the individual transducers are

required to obtain T. Clearly, if the drivers are identical, only

6 parameters are needed. This section focuses on Platonic

solid arrays made up of transducers that are only nominally

identical; the model parameter variability introduced by the

manufacturing process is taken into account by considering

these 6 parameters as random variables with mean values M,

R, C, R(e),Ble and A. These values lead to the nominal trans-

duction matrix, T, whose entries are

T ll′ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣Z
(m) +

(
Ble
)2

R(e)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ δll′ −
ρc2

jωVb
A

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
R(e)

Ble
, (12)

where Z(m) = − jωM + R − ( jωC)−1.

As said before, the ARMs of the Platonic loudspeakers do

not depend on ω. Moreover, they are eigenvectors of T [9].

Thus, the set of nominal voltages vl that leads to the lth ARM

is

vl(ω) = T(ω)ψl = μl(ω)ψl, (13)

where μl is the lth eigenvalue of T.

If the model parameter variability is taken into account,

the set of voltages vl that leads to ψl is

vl(ω) = T(ω)ψl, (14)

where T now takes into account the deviation of the elec-

tromechanical parameters from their nominal values.

The error due to the transducers variability can be eval-

uated by the difference between the ARMs and the velocity

patterns produced by vl when the drivers variability is taken

into consideration; these patterns are given by T−1vl. Such a

difference can be evaluated by

εl(ω) =
‖T−1(ω)vl(ω) − ψl‖2

‖ψl‖2 . (15)

Substitution of Eq. (13) into (15) yields

εl(ω) =
‖[T−1(ω)μl(ω) − I]ψl‖2

‖ψl‖2 . (16)

It is worth noting that T possesses only two distinct eigen-

values (μ1 and μ2−L) regardless of L [9], which simplifies the

computation of ε.
Finally, inspection of Eqs. (11) and (16) shows that εl de-

pends non-linearly on the values of 6L independent param-

eters. In addition, the influence of each parameter on εl de-

pends on the values of other parameters. This complicates

the uncertainty propagation analysis, and thus a Monte Carlo

method is used in this work, which will be presented in the

next section.

4 Case study: a dodecahedral array
In order to illustrate the ideas presented throughout the

paper, this section investigates a real compact array of twelve

transducers distributed on a spherical frame according to the

dodecahedron geometry. Figure 2 shows this dodecahedral

array, which has been designed and built by the authors.

Figure 2: Spherical array prototype with L = 12 independent

transducers mounted on a sphere with radius re = 0.075m.

The exterior and interior radius of this loudspeaker ar-

ray are re = 0.075 m and ri = 0.066 m, respectively; and

it is made up of twelve AurasoundR© NSW2-326-8A drivers

(nominal diameter: 0.051m). In order to obtain a first sta-

tistical representation of the electromechanical parameters of

the individual drivers, 16 samples of the AurasoundR© NSW2-

326-8A drivers have been considered. For each individual

transducer, the six parameters mentioned before (M, R, C,

R(e), Ble and A) have been estimated from a set of electrical

impedance measurements. Then, their mean values and stan-

dard deviations have been derived from the results obtained

for the 16 drivers. These are shown in Table 1, as well as

the Relative Standard Deviation (RSD) expressed in percent-

ages. For further details on the parameter estimation method

and on the spherical array design, see Ref. [7]. It is worth

noting that, since only 16 samples have been considered, the

statistical descriptors given in Table 1 are provided for guid-

ance and illustrative purposes only.

Table 1: Estimated model parameters.

Parameter Mean value Standard deviation RSD (%)

M (kg) 1.09 × 10−3 0.05 × 10−3 4.6

R (N.s/m) 0.2760 0.0256 9.3

C (m/N) 4.780 × 10−4 0.545 × 10−4 11.4

R(e) (Ω) 6.32 0.10 1.6

Ble (T.m) 3.15 0.11 3.5

A (m2) 12.06 × 10−4 0.44 × 10−4 3.7

Assuming a normal distribution for each of the param-

eters in Table 1, a Monte Carlo simulation can be used to

obtain a statistical description of ε. The procedure used in

this work is as follows:

1. To evaluate T from Eq. (12) and the mean values in
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Table 1;

2. To evaluate μ, which are the eigenvalues of T;

3. To obtain twelve values for each one of the six param-

eters by using a pseudorandom number generator to-

gether with the values given in Table 1;

4. To evaluate T from Eq. (11) by using the 6 × 12 = 72

values obtained in step 3;

5. To calculate ε from Eq. (16) and to record the results;

6. To repeat steps 3 to 5 a large number of times;

7. To obtain a statistical description of ε from the recorded

data.

Some results obtained by using this procedure with 5000

samples in the Monte Carlo simulation are presented below.

Figure 3 shows the mean value of ε, ε, as a function of

frequency for the twelve ARMs of the dodecahedral loud-

speaker array. It can be noticed that ε is larger in the low-

frequency range and stabilizes at the value 0.06 approximately

as frequency increases, regardless of the ARM considered.

In fact, as indicated in Table 1, the relative standard devi-

ations of C and M are 11.4% and 4.6%, respectively. Be-

cause C possesses a larger variability than M, ε is larger in

the compliance-dominated frequency range, i.e., at the low

frequencies, as Figure 3 reveals. Besides, the ARM # 1 has

a larger ε than the ARMs # 2-12 due to the acoustic interac-

tion between the drivers inside the hollow spherical cabinet,

which is more pronounced for the ARM # 1 (transducers in

phase), mainly at low frequencies. Inspection of Figure 3

also reveals that ε depends significantly on frequency from

200 Hz to 500 Hz approximately, so that the directivity fil-

ters cannot be considered as frequency independent in this

frequency range.
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Figure 3: Mean value of ε for the twelve ARMs of the

dodecahedral loudspeaker array.

Figures 4 to 7 show the boxplots for ε corresponding to

the ARMs # 1, 3, 5 and 11, respectively. For the sake of clar-

ity, the data are given for only ten frequency values, which

are equally spaced from 100 Hz to 1 kHz. The boxplot is

a simple way to describe graphically the statistical proper-

ties of a random variable; on each box, the red mark is the

median, the blue edges of the box are the lower and upper

quartiles, and the whiskers extend to the most extreme data

points not considered outliers.
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Figure 4: Boxplot for ε corresponding to the ARM # 1.

It can be noticed that ε1 presents a smaller variability in

the whole frequency range compared with ε3, ε5 and ε11. In

addition, the variability is larger at low frequencies; in the

high-frequency range, ε would be hardly larger than 0.12,

which is the upper value in the boxplot of ε5 (Figure 6).

These results, together with those presented in Figure 3,indicate

that the effects of the electromechanical parameter variability

on the spatial filters might be relevant, especially in the low-

frequency range. Therefore, one must be careful in selecting

transducers for a directivity controlled sound source.
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Figure 5: Boxplot for ε corresponding to the ARM # 3.

5 Conclusion
Platonic solid loudspeakers present the advantage of hav-

ing frequency-independent radiation modes. In addition, if

the individual drivers of the array possess identical electrome-

chanical features, the ARM-based directivity filters do not

depend on frequency either. However, the electromechanical

parameters of commercial driver units might present a sig-

nificant deviation from their nominal values due to the man-

ufacturing process, which might lead to frequency-dependent

directivity filters.

This paper investigated the effects of the above-mentioned

parameter variability on the directivity filters of Platonic loud-

speakers. As a case study, a real dodecahedral array was con-

sidered. Monte Carlo simulation results indicated that the

manufacturing variability of loudspeaker units might lead to
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Figure 6: Boxplot for ε corresponding to the ARM # 5.
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Figure 7: Boxplot for ε corresponding to the ARM # 11.

frequency-dependent directivity filters, especially in the low-

and medium-frequency ranges due to the large variability of

the suspension compliance. Thus, one must consider using

transducers built with high manufacturing tolerances in com-

pact loudspeaker arrays for directivity control.
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