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Due to acoustic comfort has become one of the principal concerns for car manufacturers, it is important to improve

i) the knowledge of the car panel vibrations which are due to two different components: acoustic excitation

and turbulent wall pressure one, and ii) the associated radiation in the car interior. In this paper, first, we

propose to synthetize such aeroacoustic wall pressure field based on Cholesky decomposition. Using analytical

expressions of the Cross Power Spectral Density of an acoustic diffuse field and of a turbulent flow (Corcos’s

model), spatial distributions of turbulent and acoustic excitations are determined. Then, as a second step, the

vibroacoustic behavior of a plate excited by these synthetized fields is computed thanks to FEM calculations

(ACTRAN software). The radiated field is then successively estimated for the acoustic excitation, the turbulent

one and for both aeroacoustic excitations. The effect of flow inhomogeneity on the vibroacoustic behavior of the

plate has been also regarded. Finally, a statistical analysis between radiated field and excitation fields is performed

thanks to the coherence function analysis. It is then confirmed that such analysis presents some limits especially

when dealing with uncorrelated sources of noise.

1 Introduction
A way to improve the acoustic comfort of vehicle

passengers is to reduce the source of noise radiated in the

interior vehicle. More precisely, for high velocities, the

car panel vibrates under the influence of the aerodynamic

exterior flow and it contributes to a non negligible noise

radiation part in the car interior. The car panel vibrations

are due to two different components: an acoustic excitation

(emitted and generated in the exterior aerodynamic flow) and

a turbulent component (development of turbulent boundary

layer flow over the car panel). Note that the summation of

both excitation components will be denote in the following:

aeroacoustic component. These both components have quite

different characteristics (energy, wavenumber representation,

propagation velocities, etc) [1, 2]. To improve the knowledge

of the car panel vibrations and the associated radiation in

the car interior, we propose to use classical models for

representing each wall pressure component. The use of such

models allows then the investigation of the vibroacoustic

response of a car panel by means of Finite Element Methods.

Generally, these excitation components are well

represented thanks to their statistical properties by means

of their Cross Power Spectral Density (CPSD) functions.

However for particular applications and/or post-processing

analyses, it is necessary to represent the wall pressure

field in the time-space domain. As a first challenge, we

propose in this paper the reconstruction of a random wall

pressure distribution from the knowledge of their CPSD.

The spatial representations of wall turbulent pressure field

as well as of the acoustic pressure field are then obtained for

each retained frequency (Part 2 of this paper). The second

challenge consists in performing FEM calculations (Part 3)

based on these synthetized pressure fields. The vibroacoustic

behavior of a rectangular plate is then analyzed as a function

of the excitation pressure field (either a purely turbulent

excitation or a purely acoustic excitation or an aeroacoustic

excitation). In Part 4, it is successively analyzed i) the

transmission efficiency of homogeneous pressure field as a

function of the type excitation field; ii) the inhomogeinity

effect of the turbulent component on transmission efficiency;

iii) the correlation which exists between radiated pressure

field and excitation fields.

2 Synthesis of wall pressure fields
In this part, it is proposed to determine the random wall

pressure fluctuations, p(xi, t) from the knowledge of its

statistical properties that is the Cross Power Spectral Density

(CPSD). Before presenting this synthesis method based on

Cholesky decomposition, the mathematical expression of

the CPSD associated with the turbulent component as well

as the acoustic component are recalled.

2.1 CPSD representations of turbulent and
acoustic excitation components

To represent the turbulent component, the classical

Corcos’s Model [5] is considered. Assuming a two

dimensional car panel (plane (O, x, y)), the following

analytical expression of the CPSD associated with the

turbulent wall pressure field is then used:

S Corcos
pp (xi, x j, ω) = S Corcos

pp (ω)e−|ωrx |/(α1Uc)e−|ωry|/(α2Uc)e−iωrx/Uc

(1)

where α1 and α2 indicate the correlation coefficients in x
and y directions respectively. These coefficients are directly

related to the integral scales in the corresponding directions.

Uc represents the convection velocity of the flow.

According to the acoustic component representation, a

diffuse acoustic field is considered and it is expressed in the

spectral domain as follows:

S Di f f use
pp (xi, x j, ω) = S Di f f use

pp (r, ω) = S Di f f use
pp (ω)

sin(k0r)

k0r
(2)

with r = x j − xi and k0 = ω/c0, c0 is the sound propagation

velocity. The summation of this acoustic component and this

turbulent one of the wall pressure field are then supposed

to represent both fields that contribute to the car panel

excitations.

2.2 Cholesky decomposition of CPSD matrix
Assuming the CPSDs of the excitation fields are known,

the first challenge consists in explaining a realization n,

p(n)(xi, ω) of the wall pressure fields associated with each

excitation (acoustic and turbulent component). Then using

an inverse FFT in the temporal-frequency domain, the

determination of a particular wall pressure realization,

p(n)(xi, t), is then conceivable [9]. In the following, the first

step implementation is presented.

Wittig et al. [10] proposed a procedure in order to

simulate multicorrelated random processes and more

recently Coyette [6] proposed to use this procedure in the

framework of wall pressure fluctuations. Wittig et al. [10]

assumed that the one sided CPSD matrix can be factored
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into a lower triangular matrix and its complex transpose

(Cholesky decomposition):

Gpp(xi, x j, ω) = Hpp(xi, x j, ω)H∗pp(x j, xi, ω) . (3)

where the one sided CPSD function is defined as follows:

Gpp(xi, x j, ω) = 2S pp(xi, x j, ω) if ω > 0, and Gpp(xi, x j, ω =
0) = S pp(xi, x j, ω = 0). Then, one realization (n) of pressure

field can be obtained:

p(n)(xi, ω) =

M∑
j=1

Hpp(xi, x j, ω)Γ
(n)
j with Γ

(n)
j = eiφ j (4)

where φ j is an arbitrary random phase: φ j = rand [0, 1] × 2π
with j = 1, · · · ,M. with M the total number of grid points

meshing the plate. We then perform N = 30 realizations

independently for each component on the surface of a plate:

pCorcos(n)(xi, ω) =

M∑
j=1

HCorcos
pp (xi, x j, ω)Γ

(n)
j n = 1, 30 (5)

pDi f f use(n)(xi, ω) =

M∑
j=1

HDi f f use
pp (xi, x j, ω)Γ

(n)
j n = 1, 30 (6)

Based on these spatial representations of each excitation

component, the CPSD is computed in order to compare

to the available analytical expressions of the CPSD. Such

analysis allows an investigation of the effect of the synthesis

procedure on the CPSD representation and especially

the effect of the number N of realizations. Figure 1

shows the sum of Corcos and diffuse CPSD functions.

Figure 1 (a) shows the CPSD as a function of frequency for

a given separation distance (x1(0, 0, 0) and x2(0.08, 0, 0)).

Figure 1 (b) shows the CPSD calculated between the central

point (x1(0, 0, 0)) and all the points situated on the line

(x1, 0, 0) for a given frequency. When using a high number

of realizations (for instance 1000), the estimation of CPSD

via these pressure field realizations approaches the analytical

CPSD.
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Figure 1: The analytical expression (—) and the estimation

by (�) 20, (×) 30 and (◦) 1000 realizations of Corcos plus

diffuse CPSD functions. (a) As a function of the frequency

for a given separation distance of 0.08 m (x1(0, 0, 0) and

x2(0.08, 0, 0)). (b) As a function of the separation distance

on the (x1, 0, 0) line at a given frequency of f = 520 Hz.

3 FEM calculation
Figure 2 displays the computational set-up of the

vibratory and radiation calculations performed thanks
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Figure 2: Computational set-up. The radiated acoustic

pressure field is calculated for a simply supported plate by

mean of finite and infinite elements. The infinite elements

start from the last finite elements and are normal to the

support ellipsoid. 50 probes are considered in order to

estimate the radiated acoustic pressure field.

to ACTRAN[11]. A rectangular plate of dimension

Lx = 0.6 m, Ly = 0.4 m and Lz = 0.0035 m is meshed

using shell elements of size Δx = Δy = 0.02 m and

Δz = 0.004 m. The mechanical characteristics of

the glass E = 4.85E10 + i2.425E9 Pa, υ = 0.2398,

ρ = 2500 kg/m3 and the simply supported boundary

conditions are considered. The characteristic acoustic

coincidence frequency can be calculated using the equation:

f c
0 =

c2
0

2π

√
12ρ(1 − υ2)

Eh2
. (7)

For this plate, the acoustic coincidence frequency is

f c
0
= 4136 Hz. For turbulent boundary layer excitation,

the aerodynamic coincidence frequency is calculated using

equation (7) by replacing the sound speed with convection

velocity of Uc = 36m/s. We obtain f c
c = 45 Hz.

Thirty six frequencies logarithmically distributed

between 185 and 10000 Hz are considered. The radiated

acoustic pressure field is calculated by an ensemble of the

finite and infinite elements. In this region a mesh size of

0.02 m is considered for : −0.4 ≤ x
′ ≤ 0.4, −0.3 ≤ y

′ ≤ 0.3
and 0 ≤ z

′ ≤ 0.4 providing a total number of 24600 finite

elements. As shown in figure 2 for the rest of space the

infinite acoustic elements are considered. The radiated

acoustic pressure is also probed at 50 individual points to

future investigate the relationship between excitation and

radiated fields. Note that the mesh interval Δx = 0.02 m

associated with the mean flow velocity Uc = 36 m/s, for

turbulent excitation and consequently aeroacoustic excitation

can not permit to investigate frequencies higher than 900 Hz

due to the non-respect of the Nyquist-Shannon criterion.

4 Results
In the following, the transmission efficiency of a given

excitation field is evaluated by:

τ(ω) =
Πac(ω)

(Lx × Ly)S pp(ω)
=

1
N
∑

n Π
(n)
ac (ω)

(Lx × Ly) 1
N
∑

n S (n)
pp(ω)

. (8)
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Π
(n)
ac (ω) indicates the radiated acoustic power given by :

Π(n)
ac (ω) = lim

T→+∞
2π

T

∫
Ω
′
Re
{
p(n)

ac (x
′
, ω,T )v∗(n)(x

′
, ω,T )

}
dx

′
,

(9)

where ∗ indicates the complex conjugate, v(n)(x′ , ω,T )

represents the vibration velocity field and Ω
′

indicates the

radiating surface of the plate. For the sake of the simplicity,

the space variable in the radiation side of the plate for the

point i is indicated by x′i . Recall that the same energy level

is considered for all realization of a given type of excitation,

S pp(ω) = S (n)
pp(ω).

To perform radiation analyses as a function of excitation

components, the following coherence function γ is used:

γ2(xi, x
′
j, ω) =∣∣∣∣∑N

n=1 p(n)(xi, ω)p(n)∗(x′j, ω)
∣∣∣∣

(
∑N

n=1 p(n)(xi, ω)p(n)∗(xi, ω))(
∑N

n=1 p(n)(x′j, ω)p(n)∗(x′j, ω))

This coherence function allows the calculation of the

correlation in the frequency domain between two signals

located on the plate (xi location) and in the radiated field (x
′
j

location). for a spatially averaged correlation, the following

mean coherence value is computed:

γ2(ω) =
1

MxMx′

Mx∑
i=1

Mx′∑
j=1

γ2(xi, x
′
j, ω) (10)

with Mx and Mx′ the total numbers of available grid points

on the flat plate domain and in the radiated domain.

4.1 Transmission efficiency of homogeneous
pressure fields

The first analysis deals with the investigation of the

transmission efficiency of an aeroacoustic excitation and

its acoustic and turbulent components. Based on FEM

calculations, the vibroacoustic responses of the simply

supported rectangular plate excited by each realization of the

synthetic fields pCorcos(n)(xi, ω), pDi f f use(n)(xi, ω) and both

pCorcos(n)(xi, ω)+ pDi f f use(n)(xi, ω) are independently studied.

To approach realistic energetic configuration, we considered

S Di f f use
pp (ω) = 0.1 × S Corcos

pp (ω) = 6.4 Pa2/rad.s−1 that

corresponds to 92 dB (acoustic diffuse field) and 102 dB

(turbulent component). The same energy is imposed for

each frequency. Figure 3 (left hand side) shows PSD of the

fluctuating pressure spectrum for each excitation field for a

selected point of the plate at (x, y, z) = (0.1, 0.16, 0).

Figure 3 (right hand side) shows the PSD of the radiated

acoustic pressure related to different excitation fields in

(x
′
, y
′
, z
′
) = (0, 0, 0.6). For a constant excitation spectrum,

the radiated spectrum should decrease regularly due to the

increase of global isolation efficiency of standard plates as

the frequency rises. This decreasing radiated spectrum is

well observed for the acoustic excitation case in figure 3

(right hand side-top). In figure 3 (right-hand side-center)

and (right-hand side-bottom), the increase of the radiated

pressure spectrum from 900 Hz for turbulent pressure field

and from 3000 − 4000 Hz for aeroacoustic pressure field is

due to the spatial aliasing effects of the excitation field. This

aliasing effect is also visible for the radiated field related to

the aeroacoustic excitation (figure 3 (right hand side-bottom)

but it seems to occur at higher frequency comparing to
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Figure 3: Left hand side: PSD of excitation pressure

fluctuation in a given point of plate: (top to bottom) a)

acoustic (b) turbulent (c) aeroacoustic. Right hand side:

PSD of radiated pressure fluctuation at 0.6m from the plate,

(x
′
, y
′
, z
′
) = (0, 0, 0.6): (top to bottom) (a) acoustic pressure

excitation, (b) turbulent pressure excitation and (c)

aeroacoustic excitation.

the one associated to the purely turbulent excitation. This

is mainly related to the acoustic part in the aeroacoustic

excitation as the radiated pressure level is mostly influenced

by this acoustic excitation.

In figure 3 (right-hand side), one can notice that the

radiated acoustic field associated with the diffuse field

excitation is almost 10 dB superior to the one related to

the turbulent excitation field. Figures 3 reveals that the

acoustic excitation is much more efficient than the turbulent

excitation in producing the acoustic radiation. In fact,

while the acoustic excitation is 10 times less energetic than

the turbulent one, the radiated field related to the acoustic

excitation is 10 times more energetic than the one related

to the turbulent excitation. This means that the acoustic

excitation is 100 times more efficient than the turbulent

excitation for most of the validated studied frequencies.

In fact, the acoustic pressure probed at particular

direction and position cannot accurately represent the

complete radiated field. Then, the transmission efficiency

analysis based on the radiated acoustic pressure in a single

point could be improper. For a more precise study the

transmission efficiency is evaluated by the equation (8).

Figure 4(b) shows the value of τ(ω) for each excitation

type as a function of frequency. In agreement with previous

analysis the transmission efficiency of acoustic excitation
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clearly appears to be 100 times higher than the transmission

efficiency of the turbulent excitation. We can also observe

that the coincidence frequency mechanism for the acoustic

excitation appears at around 3900 Hz, value which is

suitably close to the analytical one 4136 Hz, given by the

equation (7).

(a) (b)

��
�

��
���

��

��
�

��
�

��
�

��
���

��

��
�

��
�

f (Hz) f (Hz)

Figure 4: Transmission efficiency of (∗) acoustic excitation,

(�) turbulent excitation (×) aeroacoustic excitation. (a) All

pressure field realizations, (b) averaged on realizations

Figure 4(a) shows the transmission efficiency related

to each realization : Π
(n)
ac (ω)/(Lx × Ly)S pp(ω). Although

the mean pressure field is constant for each realization of

a particular excitation category, the obtained results are

different for each realization. This dispersion is related to the

random phases considered in the field generation procedure.

In the frequency range 200-900 Hz which avoids

any aliasing errors, figure 4(b) clearly shows that the

transmission efficiency of the acoustic field is 100 times (i.e.

20 dB) higher than that of the turbulent field for the chosen

Corcos and plate parameter sets. This result is in agreement

with the study of Bremner and Wilby [4] based on Statistical

Energy Analysis. They explained that the acoustic power

radiated by a glass panel submitted to an acoustic field at a

given level is 15 to 30 dB higher than the acoustic power

radiated by the same panel excited by a turbulent field

with the same level. The higher efficiency of the acoustic

excitation field is mainly related to its larger wavelengths

that can be more easily coupled with the radiating modes of

the plate that include mainly large wavelengths. Below the

acoustic coincidence frequency, the radiating modes are the

non-resonant structural modes that are driven by mass.

4.2 Transmission efficiency of inhomogeneous
pressure fields

From a realistic point of view, turbulent wall pressure

field over a car panel is fully inhomogeneous [7]. In this

sense, the wall pressure synthesis has to take into account

such property to approach the realistic flow configuration. In

a previous papers, Hekmati et al. [8, 9] described a method

to reproduce such inhomogeneous flow configuration. They

also analyzed the vibroacoustic answer of a plate excited by

such an inhomogeneous turbulent flow field. Here, we only

recall these previous results.

To synthetize an inhomogeneous wall pressure flow

field, the surface plate is divided in two regions where

two homogeneous fields are imposed and both mean flow

directions make an angle of 60o. The Corcos’s model

is then considered to reproduce the CPSD of boundary

layer flow in each homogeneous region. An hyperbolic

function is used between both homogeneous regions in

order to have a smoother transition between both regions.

It was first demonstrated that deterministic inhomogeneous

wall pressure fields can be similarly obtained thanks to

the Cholesky decomposition described above. These

deterministic signals were then used as inhomogeneous

field to examine the inhomogeneity effect on the plate

transmission. By comparing results computed from

homogeneous ’equivalent’ excitation fields and those

deduced from inhomogeneous turbulent excitation, we

shown that the inhomogeneity of the excitation field has

little influence on the global behavior of the plate. Indeed,

quasi-similar results were obtained when dealing with

’equivalent’ homogeneous excitation fields.

4.3 Coherence function analysis between the
radiated and excitation fields

Based on numerical results, a coherence function

analysis is performed to investigate the link that exists

between radiated pressure field and homogeneous excitation

fields. Several FEM calculations are carried out using as

excitation fields: a purely acoustic excitation, a purely

turbulent excitation and an aeroacoustic excitation. To

reproduce a representative energy repartition, the turbulent

component is supposed to be 10dB superior to the one

associated with the acoustic component. Figure 5 displays

the resulted mean coherence representation as a function of

the frequency. Note that figure 5 (bottom) represents the

mean coherence evolution computed between the radiated

field and either the acoustic component or the turbulent

component or both components, for one FEM calculation.

It is first observed that a very low level of mean coherence

is obtained in figure 5-(center), when dealing with a purely

turbulent excitation. The interpretation of such result may be

questionable. Indeed, in this case, as a turbulent component

is only used as excitation field, it may be expected that the

radiated field has to be well correlated with the excitation

field. That underlines the misinterpretation of such tool

analysis when dealing with uncorrelated source of noise.

Such causality analysis performed thanks to the coherence

function is only sensitive to punctual sound source which is

not the case when the turbulent flow field contains a weakly

spatial extent coherent sound source [3]. These observations

confirm that the coherence function application could lead

to misinterpretations.

We also observe that the mean coherence value computed

between the radiated field and the acoustic field extracted

from the aeroacoustic field (figure 5, bottom) is smaller that

the one computed from calculations using a purely acoustic

excitation (figure 5, top). That can be explained with the

presence of the turbulent component when dealing with

aeroacoustic excitation.

To investigate the coherence effect of the excitation

on the vibroacoustic response of the plate, a spatially

coherent excitation component is now superimposed to

the aeroacoustic excitation. The excitation field is then

composed of a diffuse component, a turbulent component

and a plane wave component representing the coherent

acoustic component. Diffuse field corresponds then to the

other more incoherent acoustic sources. Moreover, two test

cases are successively performed where the energy content

of each excitation component is specified as follows:

test case 1: S Plane
pp (ω) = S Di f f use

pp (ω) = 0.1 × S Corcos
pp (ω)
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Figure 5: Mean coherence computed between the radiated

pressure field and the diffuse acoustic component (left) or

the turbulent component (center). Right: Mean coherence

computed between the radiated pressure field and

aeroacoustic excitation field. Black line: diffuse acoustic

component. Red dotted line: turbulent component. Blue

line: aeroacoustic (diffuse plus turbulent) component.

test case 2: S Plane
pp (ω) = 0.1×S Di f f use

pp (ω) = 0.01×S Corcos
pp (ω).

with S Plane
pp (ω) = 0.6283Pa2.rad−1.Hz−1 in each case.

For comparison, FEM computations are also performed with

similar excitation fields but without plane wave coherent.

Figure 6 displays the PSD of the radiated pressure

fluctuation at 0.6m from the plate and the transmission

efficiency for the first test case. In these figures, the

frequency x-axis is limited to 900Hz. It is observed that

adding a plane wave component in the inlet excitation field

leads to a great increase of the radiated noise, of a order of

7dB for high frequencies, even if the whole energy content

of the inlet excitation field has increased of only 0.38dB. The

transmission efficiency representation confirms this result.

This is due to the presence of a plane wave component which

is perfectly coherent having a very high level of transmission

efficiency. It is then confirmed that the radiated field is quasi

only due to the acoustic component of the excitation field

(diffuse field and mainly plane wave field).

Similar conclusions can be done for the second test case even

in presence of a very small increase (0.04dB due to plane

wave) of the energy content of the whole excitation field [9].
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Figure 6: Right: PSD of the radiated acoustic pressure at

0.6m from the plate. Left: Transmission efficiency of the

plate evaluated for different excitation fields. Black line:

Diffuse field plus turbulent component satisfying

S Di f f us
pp (ω) = 0.1S Corcos

pp (ω). Dashed red line: Plane wave

field plus Diffuse field plus turbulent component satisfying

S Plane
pp (ω) = S Di f f us

pp (ω) = 0.1S Corcos
pp (ω).

5 Conclusion
In this paper, we first propose the synthesis of the wall

pressure field from the knowledge of the corresponding

statistical properties (CPSD representation) of this field.

Such synthesis based on a Cholesky decomposition and

the imposition of random phase permits then to reproduce

random spatial (acoustic and turbulent) pressure field

impinging a plate. It is also demonstrated the potential

of the synthesis procedure which can be also applied to

inhomogeneous flow field which is generally observed on

a car side window. About the inhomogeinity effect of the

turbulent excitation on the vibroacoustic response, quasi-

similar results are obtained when dealing with ’equivalent’

homogeneous or inhomogeneous turbulent field.

Second, based on FEM calculations, the vibroacoustic

behavior of a plate has been successively examined as a

function of different types of excitation (acoustic, turbulent,

aeroacoustic). Transmission efficiency analysis confirms

that an acoustic excitation is more efficient than a turbulent

excitation. Finally, present coherence function analysis

emphasizes the limits of such analysis especially when

dealing with uncorrelated sources of noise.
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