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In room acoustical planning it is important to obtain realistic impulse responses from simulations to calculate the

well-known room acoustical parameters as reverberation time, clarity etc. In most cases this is done by using a

hybrid implementation of ray-tracing and mirror image sources. This paper presents a method adopted from the

field of seismic imaging, which is based on the concept of wave field extrapolation. The advantage of modelling

with the full wave character of sound propagation is that all physical phenomena can be simulated correctly (e.g.

diffraction from edges). The proposed algorithm uses a sequence of matrix multiplications that represent gener-

alised spatial convolutions. The matrices give ample insight in the physical processes, like propagation, non-locally

reacting (complex) reflection properties and absorption. The algorithm is theoretically able to solve for an infinite

number of reflections. A comparison is made with conventional methods. Therefore, a simple rectangular box

with uniform walls and a three-dimensional configuration of an L-shaped wall, placed in an anechoic environment,

are simulated. The L-shaped wall is firstly covered with a hard surface and secondly with a non-locally reacting

absorber.

1 Introduction
The computational modelling of acoustical fields in en-

closed spaces (rooms) is in practise done with algorithms

based on the mirror image source model (MISM) [1], the

ray tracing model (RTM) [2] or a mixture of both (hybrid

method) [3]. In the most common hybrid solutions the first

reflections (specular components) are calculated by the mir-

ror image source method and the later reflections (scattered

components) by the ray tracing method.

Those two methods are not capable of dealing with diffrac-

tion (non-specular components) in general [4]. Including

diffraction is important from a listeners point of view and

in the calculation of room acoustical parameters especially

the early decay time (EDT), clarity (C), definition (D) and

the lateral energy fraction (LEF), which strongly depend on

the early part of the room impulse response (RIR) [5, 6].

Therefore, extensions are developed to add edge diffraction

to MISM [7, 8]. In adding diffraction, for instance by Pierce’s

method for MISM [7],The average value over time and space

is sufficient for most room acoustical parameters, but not at

the individual listeners positions [6, 9]. Round robin tests of

room acoustical computer simulations has pointed out that

there is room for improvement of the predictions [10, 11].

Another difficult part is the description of the boundary

properties. With the previous described methods it is partly

(or not) possible to define boundary impedance properties

[4]. The influence of such complex boundaries is not yet

explored in room acoustics. Another aspect that could be

present in non-rigid boundaries is the non-locally reacting

effect of a boundary. Other wave based methods as boundary

element (BEM) and finite element methods (FEM) are capa-

ble of handling these complex boundary conditions, but are

very computationally demanding and therefore not used for

large scale problems.

In this paper a wave field extrapolation method is de-

scribed, that is derived from an algorithm that is widely ap-

plied in seismic exploration [12]. This seismic algorithm is

called the WRW model, where the W stands for wave propa-

gation and the R for reflection [13]. The model is most sim-

ilar to BEM methods. The advantage of this model is that it

is a wave based method, which therefore includes all phys-

ical phenomena of sound propagation and reflection. The

model has already been implemented for 2-D simulations

[14]. In this paper a further developed model is presented,

which includes 3-D capabilities and the implementation of

non-locally reacting boundaries.

2 Wave field extrapolation
The underlying theory of the WRW method starts with

the Huygens principle. Huygens stated that a propagating

wave in a homogeneous medium can be described by adding

all contributions of secondary sources positioned along a wave-

front. This interpretation was later quantitatively derived and

described by the Kirchhoff-Helmholtz integral:

P(�rA, ω) =
1

4π

∮
S

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

weighted monopole field︷��������������������︸︸��������������������︷
jωρ0Vn(�rS , ω)

e− jkΔr

Δr

+ P(�rS , ω)
1 + jkΔr
Δr

cos (φ)
e− jkΔr

Δr︸�����������������������������������︷︷�����������������������������������︸
weighted dipole field

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ dS (1)

where Δr = | �Δr| = |�rA − �rS | is the distance from a secondary

source point on the boundary S and the reconstruction point

A within the enclosed volume V , φ is the angle between the

normal vector �n pointing inward to the volume and the vector
�Δr between a secondary source and the reconstruction point,

Vn is the particle velocity in the normal inward direction, P
the pressure, wavenumber k is defined as the angular fre-

quency ω divided by the propagation velocity c and ρ0 is the

air density. With the Kirchhoff-Helmholtz equation as given

in Eq. (1) it is possible to predict the pressure anywhere in the

source free volume V if the normal particle velocity and pres-

sure are known everywhere at the boundary S as indicated in

Figure 1. In the derivation of the Kirchhoff-Helmholtz inte-

Figure 1: Primary sources (×) and volume V and boundary

S for the Kirchhoff-Helmholtz integral equation.

gral (see [13] for the full details) it is possible to expand the

Green’s function for a homogeneous medium linearly with

an arbitrary solution of the source free Helmholtz equation,

say Γ(�r, ω). This solution Γ(�r, ω) can be chosen in such a

way that the dipole or monopole term in Eq. (1) is cancelled
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out. These two solutions are given as:

Γ1(�r, ω) = e jkΔr

−Δr (2)

Γ2(�r, ω) = − e− jkΔr

Δr (3)

where the subscripts 1 and 2 point out that respectively the

monopole or the dipole term in Eq. (1) drops out. These par-

ticular solutions are only valid for all cases if the boundary

S of the volume V has specific conditions. In this particular

case the volume V will be enclosed by a boundary S , which

is divided in two parts S 0 and S 1. S 1 is characterised as an in-

finite plane and on top of that a half-space S 0 that is infinitely

far away as shown in Figure 2. The primary sources are all lo-

Figure 2: Volume and boundary for the Rayleigh integral

equation.

cated below the infinite plane in such a way that there is only

a contribution of secondary sources at the boundary part S 1.

The infinite half-space S 0 has no secondary source contribu-

tion and can therefore be left out of the integration surface.

In this case the pressure at any point within the volume V can

be described by the knowledge of whether the pressure or the

normal particle velocity along the boundary S 1. This results

in the following two equations to describe the pressure at a

certain point A in the volume:

P(�rA, ω) =
jωρ0

2π

�
S 1

[
Vn(�rS , ω) e− jkΔr

Δr

]
dS 1 (4)

P(�rA, ω) =
jk
2π

�
S 1

[
P(�rS , ω)

1+ jkΔr
Δr cos (φ) e− jkΔr

Δr

]
dS 1 (5)

where Eq. (4) is called the Rayleigh-I integral and Eq. (5)

the Rayleigh-II. The method described in this paper makes

use of the Rayleigh-II integral equation. In fact this equation

allows to extrapolate a wave field to a further point in space

if the pressure at the boundary is known.

2.1 WRW model
When an extrapolation in space from a plane at z0 to a

plane at z1 is performed as in Figure 3, the Rayleigh-II equa-

tion can be expressed as:

P(x1, y1, z1, ω) =

+∞�
−∞

W(Δx,Δy,Δz, ω) × P(x, y, z0, ω)dxdy

(6)

where Δx = |x1 − x|, Δy = |y1 − y| and Δz = |z1 − z0|.
In fact this represents a spatial convolution in x and y with

W(Δx,Δy,Δz, ω) as integral kernel that represents the prop-

agation from each point on the z0 plane to the z1 plane. The

propagation kernel is defined as:

W(Δx,Δy,Δz, ω) =
jk
2π

(
1 + jkΔr
Δr

)
cos (φ)

e− jkΔr

Δr
(7)

Figure 3: Spatially discretised geometry for extrapolation of

the wave field from a plane at z = z0 to a plane z = z1.

In numerical simulations it is necessary to perform a discreti-

sation step and the spatial convolution, as defined in Eq. (6),

can then be expressed as:

�P(z1) =W(z1, z0)�P(z0) (8)

where the pressure is calculated for one frequency at all the

points at the z = z1 plane. Keep in mind that if the propa-

gation is reversed, so extrapolation from the plane z = z1 to

z = z0, the propagation matrix W(z1, z0) has to be inverted.

The new propagation operator can be defined as W(z0, z1) =

[W(z1, z0)]T . Another important process of wave propaga-

tion is the reflection at a boundary. In case of a geometry

with one boundary at z = z1, the incoming wave field �P+(z1)

and the reflected wave field �P−(z1), as drawn in Figure 4, can

be expressed as:

�P−(z1) = R(z1)�P+(z1) (9)

where the reflection matrix R(z1) is defined as a diagonal

Figure 4: Reflection of a wave field at a boundary.

matrix with the reflection coefficients of each grid point on

the boundary for the non-locally reacting case. The reflec-

tion coefficient is defined as R =
√

1 − α(ω), with α(ω) the

absorption coefficient of the boundary. The reflection coeffi-

cients can be complex valued in case of, for instance, porous

absorber material.

To make the process of propagation from a source to a

boundary, reflection, and propagation from the boundary to

a detector complete, the two previous processes are merged

together. The source(s) can be described by the source vec-

tor �S (zs) at a certain plane z = zs, the propagation from the

source(s) to the boundary by the propagation matrix W(zb, zs),

the reflection process by the reflection matrix R(zb) and as

last step the propagation from the boundary to the detector(s)

by W(zd, zb). This process is schematically shown in Figure

5. The resulting sound pressure at the detector is given by:

Figure 5: Propagation from sources (×) to boundary to

detectors (◦).

�P(zd) = �P+(zd) + �P−(zd)

= W(zd, zs)�S (zs) +

[W(zd, zb)R(zb)W(zb, zs)] �S (zs) (10)
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which is known in the field of seismic exploration as the

WRW model.

2.2 WRW for multiple boundaries
In the previous section the WRW method is derived for

one reflection at one boundary. In this section the basic model

is extended to multiple boundaries and multiple reflections

to be able to simulate an enclosed space. To get a better

overview over the matrix operations the notation is slightly

changed. The lower indices of the matrices indicate the prop-

agation direction, for example W(zd, zs) is indicated as Wds

for the propagation of the source(s) to the detector(s), or the

boundary they are working on, for example R(z1) is indicated

as Rb1
. This also takes away the restriction that the propaga-

tion can only take place between parallel planes. The orienta-

tion of the boundaries is unrestricted and does not even have

to be closed. The example case that is used is a rectangu-

lar room with four sidewalls (boundaries b1 to b4), a ceiling

(boundary b5) and a floor (boundary b6), which also encloses

sources (s1 and s2) and detectors (d1 to d4). 2-D cross sec-

tion of this geometry is given in Figure 6. The contribution to

Figure 6: Rectangular room with walls (boundaries),

sources (×) and detectors (◦).

the wave field by the reflective part can be defined as an itera-

tive process, which starts with propagation from the source(s)

to the walls followed by a reflection and propagation to the

other walls and finally contributes to the detector point(s).

The calculation of the reflected wave field is schematically

shown in the top part of Figure 7. The matrix operators that

��

Figure 7: Diagram of the model with the total �P, reflected
�Prefl and direct wave field �Pdir.

include all the reflection and propagation properties for the

complete geometry will be defined as follows. The source

vector �S includes the number of sources and their strength

for the specific frequency ω and is defined as (with the total

number of sources i):

�S =
(
S 1(ω) S 2(ω) · · · S i(ω)

)T
. (11)

The matrix operator for the propagation from source(s) to

detector(s) Wds, source(s) to the boundaries Wbs and bound-

aries to the detector(s) Wdb are defined as (with the total

number of sources, detectors and/or boundaries indicated as

i and j):

Wxy =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wx1y1
Wx1y2

· · · Wx1yi

Wx2y1
Wx2y2

· · · Wx2yi

...
...

. . .
...

Wx jy1
Wxjy2

· · · Wx jyi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (12)

The boundary properties are collected in one matrix R, where

on the diagonal the matrices of separate boundary properties

Rb, as mentioned in the previous section, are placed:

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rb1
0 · · · 0

0 Rb2

...
...

. . .
...

0 · · · · · · RbN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (13)

Propagation between boundaries is collected in the matrix

W, which includes the individual propagations between the

boundary parts (with N the total number):

W =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Wb1b1
Wb1b2

· · · Wb1bN

Wb2b1
Wb2b2

...
...

. . .
...

WbN b1
· · · · · · WbN bN

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (14)

the matrix components Wpp represent the interaction of the

boundary with itself. This can be interpreted as propagating

bending waves. In general cases these matrices will be zero

Wpp = 0. Furthermore, it can be easily seen that Wpq =

Wqp.

Analogue to Eq. (10), the reflected wave field at the

detector location(s) in case of one reflection with multiple

boundaries is calculated by:

�P1 = [WdbRWbs] �S (15)

and if this is extended to the mth-order reflection the expres-

sion in Eq. (15) can be generalised to:

�Pm =
[
Wdb (RW)m RWbs

] �S (16)

The resulting reflected wave field at the detector locations
�Prefl is given by the summation of all reflection orders M,

which gives the following expression in case M = ∞:

�Prefl =

∞∑
m=0

[
Wdb (RW)m RWbs

] �S
=

[
Wdb (I − RW)−1 RWbs

]
�S (17)

where use is made of the fact that the summation is a Neu-

mann series, which can be written as a matrix inversion. The

matrix I here is the unity matrix. Furthermore, it is neces-

sary to add the direct wave field �Pdir from the source(s) to

the detector(s) to get the total wave field �P at the detector(s),

schematically shown in the bottom part of Figure 7. The total

wave field is therefore given by:

�P = �Pdir + �Prefl

=
[
Wds +Wdb (I − RW)−1 RWbs

]
�S (18)
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2.3 Non-locally reacting reflection
The structure of the matrix with the boundary properties

Rb allows to incorporate non-locally reacting (or angle de-

pendent) reflection properties. Each row in the Rb matrix

can be interpreted as a reflectivity convolution operator [15].

In case of a locally reacting surface the convolution operator

is represented by a finite impulse in the space-frequency do-

main and give unity in the angle-frequency domain as shown

in Figure 8. The transformation between the two domains is

by means of a spatial Fourier transform, where kx =
ω
c sinα,

with α the angle of incidence. The reflection matrix is for

0

0

1

R(x, )

0

1

R(k
x
, )

Figure 8: Locally reacting reflection in space-frequency

R(x, ω) and angle-frequency R(kx, ω) domain.

the locally reacting case a diagonal matrix with the reflection

coefficients on the diagonal:

Rb =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R(ω) 0 · · · 0

0 R(ω)
...

. . .
...

0 · · · R(ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (19)

In case of a non-locally reacting boundary the convolution

operator is represented as a function, for example only re-

flection for small angles and no reflection at wider angles

(block function) as given in Figure 9. The reflection matrix

0

0

R(x, )

0

0

R(k
x
, )

Figure 9: Non-locally reacting reflection in space-frequency

R(x, ω) and angle-frequency R(kx, ω) domain.

is defined in this case by a band matrix:

Rb =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R(x11, ω) R(x12, ω) · · · 0

R(x21, ω) R(x22, ω)
...

. . .
...

0 · · · R(xNN , ω)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (20)

2.4 Numerical aspects
One of the prerequisites of obtaining a valid outcome of

the model is to have enough boundary sample points. In gen-

eral there is the minimum requirement of satisfying Nyquist’s

spatial sample theorem. The expression for the maximum

frequency in relation to the sample distance is given as:

fmax =
c

2Δξ
(21)

with Δξ the distance between two boundary sample points.

3 Simulations

3.1 L-wall structure
A simple L-shaped wall geometry is taken, where a single

broadband point source is placed in front and a microphone

array in between as in Fig. 10. The wave field is simulated

with both an angle independent reflection coefficient and an

angle dependent reflection coefficient with a block function

in the kx-domain, as given in Fig. 9.

Figure 10: Geometry L-wall with source and detector array.

The results and differences are given in Fig. 11, where

the following effects are visible: The edge diffraction of the

wall ends (arrow a), first order reflection of the wall parallel

to the detector array (arrow b) and the second order reflection

of the sidewall to the parallel wall (arrow c). The first reflec-

tion does not show much difference, because the incoming

wave field is in an almost perpendicular angle. So it reacts

as a quasi locally reacting surface due to the block reflection

coefficient function in the kx-domain. On the other hand the

second order reflection is a result of a wave field coming in

under an angle. This explains the difference between the sec-

ond order reflection and the first order reflection, caused by

non-locally reacting boundary properties. Of course a block

function for the reflectivity is an extreme case, in real mate-

rials the difference will be less. What can also be observed is

the edge diffraction at the two ends of the wall in both cases

and is similar for the locally and non-locally reacting case.

3.2 Rectangular box
A comparison is made between BEM and WRW in cal-

culating the sound pressure in a rectangular box of dimen-

sions x = 0.21 m, y = 0.21 m and z = 0.03 m. Inside, a

point source is placed at (0.015, 0.015, 0.015) m and a de-

tector at (0.21, 0.21, 0.03) m as given in Fig. 12. The results

Figure 12: Rectangular box of height z = 0.2 m with source

(×) and detector (◦).
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Figure 11: Reflected pressure fields (in Pa) of non-locally and locally reacting L-wall, and the difference.

are shown in Fig. 13 for the sound pressure amplitude and in

Fig. 14 for its phase. In the WRW method occurs a small fre-

quency shift, which could be due to the small dimensions of

the box: The Rayleigh-II integral is based on infinite bound-

aries. The boundary influences for a larger box are way less

than in this small box. In further research the differences for

larger geometries will be investigated.
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Figure 13: Sound pressure in point x = 0.21 m, y = 0.21 m

and z = 0.03 m for BEM and WRW simulation.
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Figure 14: Phase in point x = 0.21 m, y = 0.21 m and

z = 0.03 m for BEM and WRW simulation.

4 Conclusions
A 3-D acoustical simulation algorithm (WRW method) is

presented, which is able to handle edge diffraction and non-

locally reacting (angle dependent) boundary conditions. Pre-

liminary results are shown for an L-wall shaped structure and

a small rectangular box. It is necessary to further investigate

the influence of non-locally reacting boundary properties on

the total wave field compared to locally reacting ones. Fur-

thermore, the cause of the differences between the BEM and

WRW results shown in the frequency domain must be iden-

tified for the validity of the method in combination with the

geometry considered.
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