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A direct method,- termed “Method of Orthocomplement”,- of determination of modal remainders in truncated 
modal series, in structural or acoustic analyses, has been proposed by the authors, leading to explicit expressions 
of the response of a free-floating mechanical system or of an acoustic cavity, by explicit “accelerated” modal 
formulae including static terms and accelerated modal series. The resulting formulae are recalled in the paper, 
with a special attention to the pseudo-inversion techniques required by the singular static terms. Since the 
coupling of an acoustic cavity results from the reduction of the acoustic dynamic stiffness to generalized degrees 
of freedom defined by the coupling matrix, it will be shown that applying the preceding formulae to vibro-
acoustic coupling leads to two possible methods : a “low frequency” method based on the algebraic computation 
of static terms, which delivers added stiffness and mass matrices to be used from the Helmholtz 0Hz frequency 
to the first non-zero acoustic frequency ; a general “high frequency” method where the preceding static terms are 
complemented by a reasonable number of cavity modes. 

 

1 Introduction 
In this paper, modified “accelerated” modal formulae 

are applied to the effective solution, through pure finite-
element modeling of both structural and acoustic parts, of 
vibro-acoustic coupling problems. In contrast with  more 
widespread general methods, [1,2] , a one-variable 
Helmholtz fluid formulation is retained, with the main 
advantage that, besides the possibility of using simple 
laptop computers, the connection with physical concepts 
remain accessible, which clearly enhances a better 
understanding of the specificities of vibro-acoustics by 
comparison with ordinary coupling of structural 
subsystems. 

“Accelerated” modal formulae are presented in Part 2 of 
the paper, with a special emphasis on pseudo-inversion 
operations, that are strictly required by the singularities of 
structural matrices in the general case of free-floating 
structures or acoustic cavities, and unfortunately make the 
whole difficulty of the subject. Detailed proofs should be 
found, by example, in ref. [3], and technical details on 
pseudo-inversion in ref [4]. In addition, it should be 
remarked that equivalent results can be obtained in an 
implicit form through appropriate Ritz-Galerkin 
transformations [5,6]. From the practical point of view, one 
will find at the end of the section a short MatLab® script 
that can be used to change abstract considerations on 
pseudo-inverse operators into effective operations on 
structural or acoustic matrices.  

In parallel with applications to Structural Dynamics, 
various applications to the calculation of acoustic responses 
and receptances have been proposed by the authors [7].  
Part 3 of the paper develops a first application to vibro-
acoustic coupling, with convincing test examples in Part 4. 

2 Accelerated modal formulae 
2.1 General formulae 

Consider two positive NxN symmetric matrices K, M , 
where M is a regular matrix while K is a degenerate matrix 
of rank N-s - typically a stiffness and a mass matrix in free 
floating conditions – and suppose that the generalized 
eigenvalues and eigenvectors of matrix K with respect to M 
have been properly extracted through an appropriate modal 
analysis. The NxN matrix of mass-normalized modes, Ψ , 
being split up in a Nσ ×  modal matrix, 0Ψ ,  related to 

modes at zero frequency, and a ( )N Nσ− × , modal 

matrix, Ψ+ , corresponding  to modes at strictly positive 
frequencies, it has been shown in ref. [3] that: 
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with the consequence that for any localization or 
combination matrix P : 
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The preceding formula obviously needs for some 

clarifications.  

• The first term in the right hand side of Eq. (2) is 
clearly the singular contribution of 0Hz modes  

• The second term describes in structural applications 
elastic deformation under combinations of external 
and inertial forces, and is ordinarily referred to as 
“Inertia Relief Contribution”. It results from 
delicate pseudo-inversion techniques that are fully 
detailed in refs. [3,4] . Note that Π and MΠ , 
respectively stand for the Euclidian and M-  
projectors to the nullspace, ker K , spanned by 

0Ψ . Also note that D denotes an arbitrary non 
zero number, whose presence is essential to 
perform the centre inversion, but whose value has 
curiously no influence on the overall result (see 
details in refs [3,4]).  

• The third term, at last, only differs from an ordinary 
modal summation by the “accelerating” factor 

2 2
mω ω that affects each contribution. This 

obviously tends, at a given frequency, to 
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drastically minimize the contributions of high 
order modes, and thus the truncation error.  

2.2 Theoretical comments 
An indefectible connection exists between truncation 

corrections and exactness at 0Hz, and, it is important to 
note that the first two terms in decompositions (1) or (2) are 
indeed the exact first two coefficients in the Laurent 
expansion of  the considered receptances at 0Hz. 

The whole affair is indeed in the progressive 
transformation of ordinary modal representations in the 
form 

( ) 2 2
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A step-by-step direct analysis of modal remainders 

leading to that transformation,-  termed “method of 
orthocomplement”,-  is fully detailed in ref. [3] . 

Complements on inertial and inertia relief contributions 
can also be found in ref. [4] .  

Although that result has not still been published, note 
that appropriate Ritz-Galerkin transformations have been 
verified to implicitly  lead to the same result. 

2.3 Practical computations 
If S denotes an arbitrary spanning matrix of ker K - 

by instance 0=S Ψ - projectors Π and MΠ can be 
expressed as [3,4]:  

 
( )

( )

1

1

T T

T T
M

−

−

⎧ =⎪
⎨
⎪ =⎩

Π S S S S

Π S S M S S M
 (4) 

From this, the inertia relief coefficient, say 1a , can be 
easily derived ; while, the inertial coefficient,  

 ( )0 0 0 0 0a PΨ PΨ PΨ Ψ P= =
T T T  (5) 

can be seen [3,4] to be given by the general expression : 

 ( ) 1
0a P S S M S S P

−
= T T T  (6) 

that perfectly coincides with expression (5) when 0=S Ψ

since, in that case, 0 0Ψ MΨ 1=T . 
The practical computation of the first two terms in 

expression (2) can thus be performed by the simple MatLab 
script that follows, while the third term can be easily 
assembled since it only differs from an ordinary modal 

summation by the acceleration factor 2 2
mω ω . 

 %------------------------------------------- 
   Given K , M and a localization matrix P 
    %------------------------------------------- 
 S=null(full(K)) ;         % kernel of K  
 N=size(K,1) ; 
 PI=S*(S.’*S)\S.’ ;        % PI-projector 
 PM=S*((S.’*M*S)\S.’*M)) ; % M-projector 
 UN=sparse(eye(N)) ; 
 UNPM=UN-PM ;     % complementary M-projector 
 PS=P*S ; 
 P1PM=P*UNPM ; 
 lambda=trace(K)/N ; %conditioning of pinv 
 ISVD=lambda*PI+K ; 
    a0=S*((S’*M*S)\PS.’) ; 
 a1=UNPM*(ISVD\P1PM.’) ;; 

 a0=P*a0 ;   % inertial coefficient in Eq.(2) 
 a1=P*a1 ;   % inertia relief term in Eq.(2) 

3 Vibro-acoustic coupling 

3.1 One-variable fluid formulation and 
coupling matrix 

The variational formulation and finite-element 
discretization of vibro-acoustic models lead to hybrid linear 
systems, linking nodal vectors of structural displacements 
U  and acoustic pressures, P ,  to the vectors of structural 
and acoustic excitations, F , D ,  through equations in the 
form : 
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where K ,M are the stiffness and mass matrices of the 

structural part ; H , Q  , the normalized fluid matrices, in 

use to approximate volume integrals in the form  

f

p. dV
Ω

ϖ∇ ∇ ≈∫ ϖ p H , 
f

p. dV
Ω

ϖ ≈∫ ϖp Q ;  

and  C  , the "coupling matrix" classically used [2] to 

approximate surface integrals in the form 

f
np u ds

Ω∂

≈∫ nu C pT  . 

Provided the attention is focused on the mechanical 
response of the structural part, and provided there are no 
acoustic sources, Eq. (7) can readily be reduced to:  
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Because H  and Q  have exactly the same algebraic 

properties as the K and M structural matrices, it is clear 
that formulae (2) can be applied, using the coupling matrix 
C in place of P , and the generalized eigenvalues and 
eigenvectors of H with respect to Q ,or  in other words, 
the rigid cavity modes and frequencies, in place of the 
structural modes and eigenfrequencies.  

Before proceeding to that substitution, it is important to 
note that despite of a total algebraic similarity, structural 
and Helmholtz fluid matrices are physically antagonistic 
entities, respectively of the rigidity type and of the mobility 
type.  In particular, modes refer in the former case to states 
of maximum compliance, and in the latter case to states of 
maximum rigidity. That exchange of displacement and 
force variables is the specificity of Helmholtz vibro-
acoustic coupling and can lead unfortunately to erroneous 
ideas – like hoping to observe the Helmholtz mode on the 
coupled structural system – and also of unforeseen 
difficulties – like the absence of efficient acoustic static 
corrections in most commercial finite-element codes, that 
probably takes its origin in the fact that the projector term 
in Eq. (2) although its expression remains perfectly valid in 
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the dual acoustic background, cannot be easily given as an 
inertia relief term and thus remains hardly accessible to 
current engineering considerations. 

3.2 Low frequency added stiffness and 
mass method 

Provided acoustic modal contributions of the third term 
of Eq. (2) remain negligible, namely in the low frequency 
range between the 0Hz Helmholtz frequency and the first 
non-zero cavity frequency, the considered equation can be 
approximately developed as : 
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where S is a spanning matrix of kerQ , and the 
computation of projectors is now greatly simplified by the 
fact that this nullspace in acoustic applications is a 1-
dimensional vector space of constant vectors [7].  

There is no difficulty to introduce  added stiffness and 
mass matrices  
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to simply write the coupled equation of motion of the 
structural part as  

 ( ) ( )2δ ω δ⎡ ⎤+ − + =⎣ ⎦K K M M U F  (12) 
Assembling and solving this equation is termed in the 
following example “the low frequency” or “added stifness 
and mass method”. The method is valid between 0Hz and 
the first non-zero cavity eigenfrequency. The contribution 
of the paper is in the expressions (10),(11) of coefficients in 
terms of projectors and in their interpretation as Laurent 
coefficients relative to the coupling matrix. 

3.3 Accelerated modal high frequency 
method 

After an adequate renormalization of acoustic modal 
entities,- that is necessitated by the presence in a-
dimensional equations of terms fρ , c , and wave numbers 

cω ,- there is no difficulty to deduce from (2) something 
like that : 
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where,- mΨ being an adequate system of renormalized 
cavity modes at frequencies mω  ,- m m

C =Ψ CΨ denotes 
the restriction of these modes to the generalized dofs that 
are defined by the coupling matrix. 
Substituting that expression in Eq. (8) then brings the 
following correction to the low frequency approximation of 
the preceding paragraph: 

 
( ) ( )2

4
2 2 2

2

1 1n m m
f C C

m m m

δ ω δ

ρ ω
ω ω ω=

⎡ ⎤+ − +
⎢ ⎥ =⎢ ⎥−⎢ ⎥−⎣ ⎦

∑

K K M M
U F

Ψ Ψ

L

L T (14) 

That way of doing is termed here “accelerated modal 
high frequency method”. It will be shown on examples that 
it can be used without any restriction on the frequency 
range. 

4 Test examples 
4.1 Coupling of aluminium and steel 
plates to an acoustic cube 

The proposed coupling methods have been first tested 
on the 1mx1mx1m acoustic cube of Fig. 1. The cavity is 
filled up with air at ambient conditions. All walls are kept 
rigid, at the exception of the upper face, which is first 
coupled with a simply supported 1mx1m aluminium plate 
of 5.10-3m width, and second  to a more rigid steel plate of 
the same dimensions . 

 

Figure 1: Meshed skin of the first test example 
(1mx1mx1m cube filled up with air)  

The acoustic mesh comprises 4930 CTETRA elements 
corresponding to 1193 acoustic nodes and nodal pressures. 
The first acoustic non zero cavity resonance is found at  

 

Figure 2: [0,100Hz]-pointwise receptance on an 
aluminium plate coupled with an acoustic cube :  
added stiffness and mass (-) ,  exact (…),  in vacuo (-) 
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Figure 3: [0,100Hz]-pointwise receptance on a 
steel plate coupled with an acoustic cube :  added 
stiffness and mass (-) ,  exact (…),  in vacuo (-)  

170.9Hz. Structural meshes comprises 135 nodes 
coinciding with acoustic nodes at the upper face of the 
cube.  Finite element models of the plates are reduced to 
405 dofs, corresponding to normal deflections and in-plane 
rotations. 

Figs. 2 and 3 show the reconstitutions in the range 
[0,100Hz] of pointwise receptances at the surface of the 
coupled plates by the low frequency approximation(12).  
Results are in perfect agreement with direct computations. 
Blue lines on the figures correspond to receptances  in 
vacuo . It is interesting to note that the first in vacuo mode 
of the aluminium plate fades out after coupling, ,  literally 
stuck by the rigidity of the Helmholtz mode. This is not the 
case for the stronger steel plate for which the in vacuo 
mode changes itself to a coupled mode at a lower 
frequency. 

The first acoustic non zero cavity mode  lying at 
170.9Hz, it should be clear from theoretical considerations 
of Section 3 that in the considered [0,100Hz] range no other 
acoustic  perturbations than the preceding ones can be 
expected or observed.  

To show such perturbations, Figs. 4 and 5 proposes 
reconstitutions of the preceding pointwise receptances in  

 

 

Figure 4: [0,250Hz]-pointwise receptance on an 
aluminium plate coupled with an acoustic cube :  
hf method (-) ,  exact (…),  in vacuo (-) ; acoustic (v) 
and  structural (^) frequencies 

 

Figure 5: [0,250Hz]-pointwise receptance on a 
steel plate coupled with an acoustic cube :  hf 
method (-) ,  exact (…),  in vacuo (-) ; acoustic (v) 
and  structural (^) frequencies 

the range [0,250Hz], using the accelerated modal “high 
frequency formulae” (14). Three cavity frequencies, and 
due to the symmetries of the cube, eight cavity modes are 
present in the considered frequency band : the Helmholtz 
mode at 0Hz, 3 modes at 170.9 Hz and 3 other modes at 
243 Hz.  
One can observe a perfect agreement of accelerated modal 
calculations with direct resolution. Perturbations of  in 
vacuo responses, are concentrated around the three cavity 
frequencies, and visibly affect the structural modes in 
frequency coincidence. Although the example may seem 
extremely simple, various sorts of perturbations can be 
observed with the steel or aluminium plates, which seems 
to generalize what was already detected with the Helmholtz 
mode. 

4.2 Coupling of an aluminium plate to a 
parallelepipedal acoustic cavity 

In the second test example of Fig. 6, the preceding cube 
is dilated to a 1mx1mx4m parallelepiped,- meshed up with 
28605 CTETRA elements and 6370 nodes ,- still filled up 
with air and coupled on one of its square faces to the same 
simply supported 1mx1m aluminium plate as before. 

 

Figure 6: Meshed skin of the second test 
example (1mx1mx4m parallelepiped filled up 
with air)  

As a consequence, the first non-zero acoustic 
eigenfrequency, which was about 170.9 Hz in the first 
example, now falls to 28.4Hz,  with the major consequence  
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Figure 7: [0,100Hz]-pointwise receptance on an 
aluminium plate coupled with an acoustic 
parallelepiped:  added stiffness and mass (-) ,  exact 
(…),  in vacuo (-) ; acoustic (v) and  structural 
(^) frequencies. 

 
 

that the low frequency added stiffness and mass method 
fails to correctly render the vibro-acoustic coupling in the 
[0;100Hz] band, as illustrated on Fig. 7 .  

 
Apart from slight disturbances that take their origin in 

some imprecisions in the finite element code used to 
compute the exact solution, Fig. 8 shows an almost perfect 
concordance of the accelerated modal method (14) with 
quasi-exact computations.  

 

Figure 8: [0,100Hz]-pointwise receptance on an 
aluminium plate coupled with an acoustic 
parallelepiped  :  hf method (-) ,  exact (…),  in vacuo 
(-) ; acoustic (v) and  structural (^) frequencies. 

Finally, Fig. 9  shows how the in vacuo behavior of the 
plate should be perturbated by acoustic coupling in the 
[0,250Hz] frequency range.  

          

 
Figure 9: [0,250Hz]-pointwise receptance on an 
aluminium plate coupled with an acoustic 
parallelepiped:  hf method (-), in vacuo (-) ; acoustic 
(v) and  structural (^) frequencies. 

5 Conclusion 

The authors sincerely hope to have shown that the use 
of apparently esoteric mathematical considerations has  
brought a very practical, concise and efficient technique of 
vibro-acoustic coupling, whose main advantage,- especially 
for tutorial purposes,- is to remain very close to Physics. 
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