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The acoustic field inside aircraft cavities is very complex. Indeed, there is often a combination of direct, diffuse and
modal fields depending on the measurement point and on the frequency band considered. This is directly linked to
the fact that different types of sources are present. In such cavities, like a cockpit, sources can be panels radiating
not necessary in a normal way, avionics systems, air vents, etc...
To find efficient solutions to reduce the noise inside aircraft cavities, a good knowledge of the directivity of the
acoustic field in the three dimensions is a great advantage. In this frame, a new intensity acoustic probe has been
developed to compute acoustic intensity vector and, acoustic density of energy based on four 1/4” microphones
measurements around a small sphere. Its originality consists in the possibility to arrange such probes in an antenna.
Several calculation methods have been studied to compute those quantities. Results are compared with intensity
measurements of class 1, considered as the reference, in different environments. The probe provides acoustic
quantities which can be input data for energetic identification methods.

1 Introduction
Noise matters into aircraft cavities, and especially cock-

pits have become real subjects of research for the manufac-
turers which don’t only focus on the cabin noise any more.
To reduce the internal noise, they need to know how the
acoustic field is distributed. But it is also crucial to localize
the noise sources, and more important, to obtain a hierarchy
of the power injected by those sources. Due to the size of the
studied cavity, and the frequency band considered, inverse
energetic methods like SEA or MES are appropriate answers
to the problem. To retrieve the acoustic power injected into
the cavity, they need the active intensity vector and the acous-
tic density of energy measured on several points. The way to
obtain quickly and precisely those quantities into a complex
environment is still under investigation.

Indeed, some tools have ever been developed in the past.
We can quote for example, Coste [1], who has designed a
hard sphere where were integrated six electret microphones,
two along the three axis. The university of Brigham [5],[2]
has manufactured hard spheres of different diameters, with
four or six electret microphones (fig 1a, found in [5]). More
recently, in [8], a new hard probe including GRAS 1/4” mi-
crophones, and preamplifiers is presented.
Concerning the open spheres, GRAS is selling a one which
looks like three unidimensionnal intensity probes, and in-
cludes six 1/2” microphones (fig 1b, extracted from [7]). To
finish, we can mention the CETIM which has designed an
open sphere with four electrostatic 1/4” microphones arranged
in a tetrahedron configuration (fig 1c, found in [6]).

Figure 1: Examples of existing energetic probes

All those probes are not really convenient for providing
quickly the acoustic energetic quantities we expect, in all the
cavity. Indeed, some of them include electret microphones
which are not really stable and accurate, and which are diffi-
cult to calibrate quickly and independently [4]. The others in-
tegrate microphones of very good quality, but the associated
computation method does not take into account the scattering
effects created by the microphones on the others.

In this paper, we will propose a new acoustic energetic
probe designed to :

• provide results in the frequency band [350, 5700]Hz

• integrate 1/4” electrostatic microphones

• use the minimum number of microphones

• include a computation method which implies the min-
imum error

• be calibrated quickly and accurately

• allow an antenna disposition with several probes

• allow a scanning method of measurement

First, the theoretical aspects to compute the acoustic en-
ergetic quantities will be presented. Then, we will define the
characteristics of the probe, and all the study that has led to
its design. To finish, acoustic tests results carried out with
the probe and a reference tool will be presented, analyzed,
and compared.

2 Acoustic energetic quantities

2.1 Three dimensional active intensity
The three dimensional active intensity Ia is computed with

the acoustic velocity vector V0 and the pressure p0 expressed
on the same point (1).

Ia =
1
2
<(p0V∗0) (1)

2.2 Acoustic density of energy
The acoustic density of energy W, or ADE, is also ob-

tained with V0 and p0 (2). It breaks down into two terms :
U, the potential acoustic density of energy, and T , the kinetic
acoustic density of energy.

W = U + T =

∣∣∣p2
0

∣∣∣
4ρ0c2 +

ρ0

4
V0V∗0 (2)

We present now two methods associated with acoustic
probes which compute V0 and p0.

2.3 Differential formulation
Pascal & Li have shown in [6] it is possible to ”use a

systematic approach” to obtain energetic acoustic quantities
with finite-sum and finite-difference approximations for four,
five, or six-microphones probes. This method is dedicated to
the open sphere probes.
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One of the objectives of our probe being to use the minimum
number of microphones, we are going to focus on the four
microphones probes. For them, the sensors are arranged in a
tetrahedron configuration. Two configurations are possible.
(3) gives the matrix of the microphones coordinates of the
tetrahedron probe we will consider, a being the radius of the
probe.

M =


a
3 − 2a

√
6

a
√

2
3

a
3

2a
√

6
a
√

2
3

a
3 0 − 2a

√
2

3
−a 0 0

 (3)

Then, the formulation of particular velocity resulting in
this case is provided by (4).

V0 =

 ∂p/∂x
∂p/∂y
∂p/∂z

 ≈ i
ρw.4a


(3p4 − p1 − p2 − p3)
√

6(p1 − p2)
√

2(2p3 − p1 − p2)

 (4)

The pressure p0 at the center of the probe is obtained by
averaging the four pressure measured around the sphere (5).

p0 =
1
4

(p1 + p2 + p3 + p4) (5)

In [6], Pascal & Li present the errors on the resulting in-
tensity for all the probes as a function of the ka product, from
0 to almost 1.8. The error in high frequencies is directly due
to the calculation method. For example, for ka = 1.6, the
error on the norm of the intensity can reach 2dB, and the an-
gular error almost 10◦. The maximum error on the potential
energy is almost 2 dB, and 1dB for the kinetic energy. Those
errors depend on the incidence of the wave. Here, they are
mentioned for the worst cases.
To finish, the error in low frequencies and the phase mis-
match are closely related. Indeed, in this frequency domain,
the phase mismatch and the phase differences between the
microphones can be equivalent.

2.4 Spherical Harmonics formulation
E.G Williams in [10] has developed theoretical aspects

of acoustic scattering of plane, and spherical waves around
hard spheres. After solving the wave equation in spheri-
cal coordinates, the pressure produced by a plane wave can
be expressed on a point defined by its spherical coordinates
(r, θ, φ) with the spherical harmonics (6). p0 and (θi, φi) are
the amplitude, and the incidence of the wave.

pi(r, θ, φ, ω) = 4π.p0

∞∑
n=0

inbn

n∑
m=−n

Ym
n (θ, φ)Ym

n (θi, φi)∗ (6)

In free field bn = jn(kr), and in the case of a hard sphere
of radius a, bn =

(
jn(kr) − j′n(ka)

h′n(ka) hn(kr)
)
.

Now, let’s focus on the inverse spherical harmonics for-
mulation detailed in [3]. The goal here is to retrieve the am-
plitude p0 and the direction (θi, φi) of the plane wave, with
four measured pressures. (6) leads to the following formula-
tion (7), where p is the vector containing the four pressures.

p = p0H.YH
k (7)

with Yk =
[
Y0

0 (k̂) Y−1
1 (k̂) Y0

1 (k̂) Y1
1 (k̂) · · ·

]
.

To compute YH
k , a pseudo-inverse decomposition is used.

Numerically, a singular value decomposition is done, and the
singular values inferior to 3% are rejected. Then, p0 can be
find with the first term of the solution vector (8).

p0 =
√

4π.
[
(HH .H)−1.HHp

]∗
1

(8)

To finish, the unit vector k̂ which gives the direction (θi, φi)
of the plane wave can be computed. Thus, the acoustic ve-
locity (9), then the acoustic intensity vector (1), and the ADE
(2) are calculated.

V0 =
p0

ρc
.
k
k

(9)

In fact, we don’t just need to determine three quantities
(p0, θi and φi), but four : the three coordinates of the unit
wave vector k̂ which lead to (θi and φi), and p0. Thus, only
the problem of a plane wave can be inverted with a four mi-
crophones tetrahedron probe. Indeed, the inverse problem
with a spherical acoustic wave introduces another quantity :
the distance to the source. This leads to an over-constrained
system.

The figure 2 shows the errors (◦) on the angles φ and θ of
the unit vector k̂, and on p0 in magnitude (dB) and phase (◦),
for ka = 0.55 and all the wave incidences.

Figure 2: Errors (◦) on the angles φ and θ, and on the
pressure p0

As can be seen, the errors depend on the incidence of the
plane wave, for a same ka. But like for the previous method,
the errors are also dependent of ka. In high frequencies they
come from the truncation of the harmonics, and from the nu-
merical computation of the pseudo-inverse matrix. They can
reach 1.5 dB for ka=1.6. In low frequencies, the errors are
very small. Like for the differential method, the low frequen-
cies measurement errors are totally due to phase mismatch.
We have limited in this study the range of ka to [0.1;1.6]. It
seems to be the best compromise between the more extended
frequency band, and the less important errors in low and high
frequencies.
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3 The acoustic probe
We have seen in the previous section, two methods for

obtaining the acoustic energetic quantities, with two kinds of
spherical probes. Now, we are going to present our probe,
and explain the reasons of our choices.

3.1 Design
Hard spheres avoid scattering matters created by micro-

phones on the others, which are supposed nonexistent for
open spheres. Actually, their ”‘hard characteristic”’ creates
scattering effects, but which can be taken into account into
calculations with a plane wave hypothesis. More-over, hard
spheres increase the phase differences between microphones.
This is a good effect for low frequencies intensity calcula-
tions, as regards to the phase mismatch. Hard spheres pro-
vide also a rigid system which is easier for microphones po-
sitioning, and allows an antenna configuration. So, the hard
sphere configuration gives the possibility to realize more ac-
curate measurements.

Reaching the ka range expressed previously, which is a
good compromise for the two calculations methods, leads to
a radius a of 15mm for the frequency band [350, 5700]Hz. To
realize measurements more punctual around the sphere, and
because including four 1/4” microphones is really difficult
due to the diameter of the probe, we have decided to connect
them behind pipes, integrated into the hard sphere. This kind
of measurement has been studied and validated in [12]. To
integrate the pipes into the sphere, the decision was taken to
limit their curvature. This explains our choice between the
two available tetrahedron configurations. Thus, three mea-
surements are done in front of the sphere, and the last one,
positioned behind the probe, is done without contact by the
last pipe, as shown in figure 3.

Figure 3: Pipes arrangement around the probe

3.2 Calibration
The calibration of the probe is the key point. It needs to

be easy and accurate. Indeed, the connection between the
microphone and the pipe creates a standing wave in the tube
which has to be taken into account, and corrected with a re-
ally accurate transfer function, in amplitude and phase. This
function depends on the size of the pipe, the piece which
connects the pipe, and the microphone type.

The length of the pipe, and the connection piece play on
the amplitude between nodes and antinodes of the function.
The interior diameter, and the length of the pipes influence
the global level attenuation. More-over, the diameter of the
pipes determines the cut-off frequency. To finish, the tem-
perature also influences the calibration function. Due to all
those properties, we have made a compromise to design the

piece between pipes and microphones, and to fix geometric
characteristics of pipes.

In order to simplify the calibration, we have chosen to
consider only one length, so only one transfer function for
the four pipes. To calibrate the reference pipe, we can use
an impedance tube, or a panel in an anechoic room. The two
test means provide the same calibration function. The figure
4 shows the calibration technique associated with the panel.
As can be seen, the panel is leaky of two holes where a pipe
and a reference microphone are introduced flush, separated
by 12mm.

Figure 4: Test device on the panel for the pipe calibration

To judge the quality of the calibration, several tests were
carried out. One consisted on measuring the transfer func-
tion, then to remove the reference microphone and the tube
from the panel, but also the microphone from the pipe. Then,
a new transfer function was measured, and the difference
with the first one was calculated. The figure 5 shows the
result for a single pipe, and two different microphones. The
two transfer functions are in good agreement. The differ-
ences in amplitude and phase are less than +/-0.5 dB and
+/-5◦ for a normal incidence of the source.

Figure 5: Repeatability of the calibration transfer function

Measurements around the sphere need to be omnidirec-
tional. Thus, the influence of the wave incidence on the
calibration has been investigated. Several transfer functions
were measured for different incidences from 10◦ to 170◦, as
regard to the normal to the panel. This test configuration
is represented on the left side of the figure 4. The figure 6
shows the results for four different angles. As can be seen,
the transfer function of the pipe is not strictly dependent of
the incidence of the acoustic wave. The connection piece be-
tween the microphone and the pipe is not the one used now
in the final probe. This explains the fairly bad results under
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700Hz, where the insulation between the tube and the micro-
phone was deficient. For the final probe, o-rings insure good
insulation.

Figure 6: Influence of the acoustic wave incidence on the
transfer function

This accuracy of the transfer function can be linked to
the class notion of the intensity probe. Here, results could
put our probe in, or very close to the class 1 (horizontal lines
on fig 6).
The feasibility of the measurement without contact has been
demonstrated during tests. More-over, we have also shown
that the surface where the pipes flush does not change the
previous results (plane or spherical).
All those tests validate the concept of the integration into a
sphere of such pipes connected to microphones.

3.3 Calculation methods
As seen before, at least two methods can provide acous-

tic quantities we are interested in, under different hypothesis.
In our case, where measurements will be performed in cav-
ities, with a reactive field, the plane wave hypothesis seems
to be inappropriate to obtain the particular velocity. On the
other hand, the velocity can’t be computed with the differen-
tial formulation because our probe is a hard sphere. This is
illustrated by the left side of the figure 7.

Figure 7: Existing methods of calculation, and a hybrid
method

In [11], Elko presents a method to compute the particular ve-
locity with the differential formulation, in the case of a hard
sphere. This method is also explained in [5]. As a result,
with a small ka approximation, for two sensors mounted on
a hard sphere, the effect of the sphere consists of artificially
increasing the distance between the microphones of a ratio 3

2 .

While Elko applies a correction of first order, assuming
ka � 1, we chose to add the direction and the amplitude
of the wave to correct the measured pressures before the ve-
locity calculation. This allows us to remove all the scattered
part to the pressure measurements, and then to use after this
step four pressures, which are only the result of the incident
wave. Our motivation to do that is directly related with the
maximum value of ka which is much higher than 1.

The strategy is sum up on the right side of the figure 7.
First, the inverse spherical harmonics formulation is used to
obtaining the direction of the incident wave and the pressure
at the center of the probe. Then, still under a plane wave hy-
pothesis, the scattered part of the pressure on the probe for
a plane wave with those characteristics is computed with the
direct spherical harmonics formulation. Then, the particu-
lar velocity is obtained with the differential formulation from
pressures corrected of their scattered part. Those pressures
are also averaged to determine the pressure at the center of
the probe.

4 Measurements

4.1 Description
Acoustic tests were carried out to evaluate the final probe

and the different computation methods. The probe was sub-
mitted to different sound fields, from the easier, one source in
an anechoic room, to the rougher, two sources in a reverber-
ant room, during punctual or scanning measurements. More-
over, a panel of 640cm2 set up between a reverberant and
an anechoic room (fig 8), and exciting by a diffuse field has
been scanned horizontally by the probe during one minute.
The results of this final test are presented below.

Figure 8: Test in the anechoic room with a panel exciting in
the reverberant room

The reference measurement system is a B&K one dimen-
sional intensity probe of class 1. The further results concern
the three computation methods:

1. Inverse spherical harmonics method, called later ‘harm’

2. Elko’s correction of velocity calculation : particular
velocity with differential calculations - pressure from
inverse spherical harmonics method, called later ‘Elko’

3. Complete correction of measured pressures : partic-
ular velocity with differential calculations - pressure
averaged, called later ‘hyb’
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4.2 Results
The figure 9 shows the intensity norm, and the density

of energy results for the panel scanned by the probe in third
octave bands. The reference is here a single normal inten-
sity measurement, because we assume the panel is radiating
in a normal way. The ‘Elko’ method and the reference are
in very good agreement from 500Hz to 4000Hz. After, the
‘hyb’ method seems to be better. We didn’t expect the ‘Elko’
method would provide good results in high frequencies, and
the ‘hyb’ method would underestimate the reference up to
4kHz. As expected, the ‘harm’ method which does not sep-
arate the active field from the reactive one, overestimates the
intensity in comparison with the reference.

Figure 9: Results on the intensity and the ADE in third
octave bands

More-over, as can be seen, the energy density results are
fairly good from 1kHz for the ‘Elko’ method. In analyzing
the intensities in the y and z directions, we have noticed a
high level for the third octave bands under 1kHz, probably
due to leaks on the panel mounting system. This can explain
those results.
Thus, the final result of the probe could be the concatena-
tion between the ‘Elko’ method up to 4 kHz, and the ‘hyb’
method for the third octave band 5kHz. Several tests carried
out in other configurations lead to the same analysis.

5 Conclusion
This article presents a new probe and a strategy for ob-

taining energetic acoustic quantities. The goal of this work
was not to develop a new model of calculation of the ener-
getic acoustic quantities. It was to design a new probe based
on existing ones, and meeting some requirements like the
possibility to create an antenna, to use 1/4” electrostatical
microphones, or to provide same results than a 1D probe, in
just one measurement instead of three.

The key point is the integration of pipes connected to the
microphones in the hard sphere. This type of measurement
allows a calibration of class 1, and it makes possible the de-
sign of an antenna of such probes. It is also a good advantage
to separate the sphere and the microphones places. Indeed, it
will be easier to change a sensor in case of trouble if it is out-
side the probe, than inside. More-over, the pipes realize very
punctual measurements. The smaller the distance between
the sensors is, the more punctual the measurements need to
be.

Then, the acoustic tests have shown the good behavior
of the probe in different kinds of acoustic fields. As regards

to the difficulty to perform really accurate tests, the results
are really satisfactory. Several tests are in progress to better
qualify the acoustic behavior of the probe in different envi-
ronment. More-over, the way to assemble the probes into a
linear antenna, and the association of the probe with an ener-
getic identification method are under investigation.
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