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Explicit time stepping renders high-resolution computational schemes to become less efficient when dealing with 
non-uniform meshes. The non-uniform meshes are, however, almost unavoidable for capturing strong solution 
gradients, e.g., for an airfoil boundary layer or a high-Reynolds number jet mixing layer. The problem is that for 
numerical stability with explicit time stepping, the Courant stability condition forces one to march the solution in 
time with a global time step that can be very small. Asynchronous time stepping, i.e., updating the solution in 
different cell sizes according to their local rates, is a promising way for improving the efficiency of explicit 
methods with highly non-uniform grids. The improvement comes by effectively boosting the local grid CFL 
number without any compromise in accuracy. In the present paper, a new asynchronous time-stepping technique 
is implemented for the Compact Accurately Boundary-Adjusting high-REsolution Technique (CABARET) Euler 
method. Numerical examples for 1D, 2D and 3D flow problems are considered and comparisons with the single-
time-step method are made. 

1 Introduction 
Large disparity of flow scales is a typical feature of 

aeroacoustic calculations. This requires high-resolution 
numerical schemes that are able to efficiently propagate 
acoustic waves without significant dissipation and 
dispersion errors on computational grids at affordable cost. 
The latter requirement is especially difficult to maintain 
with the high-resolution non-uniform grids that are essential 
in multi-space-time-scale problems. Such challenging 
applications include airfoil or jet flows, for instance, where 
the grid nodes typically need to be clustered in the vicinity 
of a viscous boundary layer or shear layer. 

Because of the low-dispersion and low-dissipation 
requirement of aeroacoustics schemes, most of the 
numerical schemes used for this kind of applications are 
based on explicit time stepping. The largest time step with 
such methods is restricted by the smallest grid size in 
accordance with the Courant-Friedrichs-Lewy (CFL) 
stability criterion. With non-uniform grids, the numerical 
efficiency in case of the single/synchronous time stepping, 
drops down because all but the smallest grid cells are 
forced to march in time with a very small time step. The 
CFL restriction can be relaxed by using semi-implicit or 
fully implicit schemes, e.g., as done in classical dual time-
stepping algorithms where the solution at each sub-iteration 
is treated as quasi-steady. Such implicit algorithms, 
however, are generally less accurate for unsteady problems 
in comparison with the fully explicit schemes.  

Asynchronous time stepping, i.e., when the solution in 
different cell sizes is updated at different rates and adjusted 
to the cell-local CFL number rather than to a global one, is 
one possible way of improving the efficiency of explicit 
methods with highly non-uniform grids without any loss of 
the original accuracy of explicit algorithms. Typical 
examples of asynchronous time-stepping algorithms 
include: (i) adaptive mesh refinement that is based on a 
hierarchy of nested levels of logically rectangular patches 
and (ii) adaptive time refinement that allows solution values 
in different elements to be adapted with different time 
increments. 

For computational aeroacoustics, examples of 
implementations of asynchronous time stepping include the 
Multi-Size-Mesh Multi-Time-Step DRP Scheme of Tam 
and Kurbatskii, 2003 (based around approach (i)) and the 
Solution-Element Conservation-Element with local time 
stepping of Chang et al, 2005 (based around approach (ii)). 

In this paper, a new asynchronous time-stepping 
technique, along the same line of thought as in (Dawson 
and Kirby, 2001) and (Omelechenko and Karimabadi, 
2006, 2007) is implemented for the Compact Accurately 
Boundary-Adjusting high-REsolution Technique 

(CABARET) scheme (Goloviznin and Samarski, 1998; 
Karabasov and Goloviznin, 2009). CABARET can be 
viewed as a generalisation of the Upwind Leapfrog Scheme 
of Iserlis (1986) to nonlinear conservation laws. It is based 
on a conservative, low-dissipative and low-dispersive 
explicit advection scheme with very compact stencil that 
for linear advection takes only one cell in space and time.  

With standard synchronous/single-time stepping, 
CABARET has been successfully used for computational 
aeroacoustics and hydrodynamics problems before (e.g., 
Karabasov and Goloviznin, 2007). The current work is 
devoted to introducing the asynchronous time stepping in 
the CABARET scheme with keeping the following 
important properties: (i) simplicity and compactness of the 
original CABARET stencil, (ii) strict conservation property 
and (iii) a built-in recipe for the treatment of inactive flow 
regions. 

2 1D Example 
To illustrate the idea of asynchronous time-stepping, a 

one-dimensional scalar conservation law 
       (1) 

is considered in the solution domain . 
The domain is covered by a non-uniform grid of cell 
volumes with spacings . It is assumed that the positive x-
direction corresponds to the increase of mesh index i. Each 
cell is allowed to march in time according to its own time  
and with its own time step .  

2.1 Basic CABARET scheme 
Error! Reference source not found. shows the associated 
data structure for computational cell in space and time: the 
solid circles refer to the location of conservation variable  
and the open circles stand for the locations of flux variables 

. The conservation variables (U) that correspond to the 
cell centres are labeled with -indices and the cell faces that 
correspond to the fluxes (F) are labeled with  and  
where indices  and  denote different sides of the 
same face.  
Starting from the known conditions at the previous time 
step, ,  and  the CABARET algorithm first 
advances the solution a half step in time, i.e., at the 
predictor stage: 

     (2) 

The solution at the new time step is computed at the 
corrector stage: 

,     (3) 

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

1304



 

where  are the fluxes at the new time level 
. For their calculation, the simple upwind 

extrapolation is used which amounts to a second-order 
approximation in space and in time. 

 
Figure 1: Computational stencil of the CABARET 

scheme. 

2.2 Nonlinear flux reconstruction 
Suppose the two adjacent cells have reachd the same 

local time at the new time step, , (Figure 2).  

 
Figure 2: Case of two adjacent cell volumes 

corresponding to the same local time at the new time level. 
 
Then the computational algorithm for updating the 

interface flux value  is the same as for the 
homogeneous/single time-stepping. In this case the 
following algorithm of the flux variable extrapolation and 
its correction based on the direct application of the solution 
maximum principle is used: 

          (4) 

 
From the two cell-face values, the choice is made based 

on solving the corresponding Riemann problem with a 
characteristic decomposition method, which for the case of 
linear advection equation amounts to the standard 
upwinding procedure. Suppose the face fluxes are defined 
in direction of the external normal to the cell face and the 
positive normal direction is defined according to the 
direction from cell  to cell . Then , 
where  is determined according to the following 
algorithm 

     (5) 

 
For asynchronous time-stepping with different local 

time steps, the flux variables that correspond to the left and 
right side of the same grid face may not always perfectly 
match in time, as shown in Figure 3. In case of the 
mismatch, instead of single  we need to introduce 2 
values:  and  . These denote variables on the 
interface  between cells  and  at the new local times, , 
and  , respectively (Figure 3). 

 
Figure 3: Case of two adjacent cell volumes corresponding 

to different local times at the new time level. 
 

now assume that  and for the flux 
reconstruction at the same space-time location the face 
variables are linearly interpolated with keeping the second-
order approximation of the scheme: 

.    (6) 

Once both flux values,  and  are known, the 
flux reconstruction problem for computing  reduces to 
the same one as for the synchronous time stepping 
algorithm: 

    (7) 

After the new flux variable is computed the 
corresponding flux  for cell  as defined in a usual manner: 

         (8) 

2.3 Time Step Definition 
Local time step is defined from the standard CFL 

condition by considering the cell-centre and cell-flux values 
available from the CABARET stencil: 

 (9) 

where  is some adjustable large-time-step parameter. 
 
Notably, in order to avoid the interpolation procedure that 
could become inaccurate and computationally expensive 
when the difference in the local time between the two 
adjacent cells tends to the round-off error, the calculation 
rule for getting time step is modified by introducing a small 
parameter, : 

       (10) 
In comparison with the previous works (e.g., Yen, 

2011), where time step size was modified according to 
some multiple of dyadic integer and the minimal local time 
step, the synchronization in our approach is directly linked 
to the global output time , i.e.  and 
always remains local. 

2.4 Event Synchronization 
It is useful to recall that the CABARET scheme has the 

following stages: (i) predictor step, (ii) updating of the flux 
variables from next time level, and (iii) corrector step. For 
asynchronous time stepping where every cell is allowed to 
have its own local time and time step , the major 
question is how to synchronise all 3 stages of the scheme.  
First, the predictor/corrector steps only use the local cell 
information, hence, no special event synchronisation is 
needed for these stages so we only have to deal with the 
upwind flux extrapolation stage. 
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For flux synchronization, introduce the cell 
indicator flags which equal  or  as the 
following: 

 if both ,  are updated/known 
from the previous time step; 

, , accordingly; 
 both fluxes ,  are updated/known; 

. 
Initially all these indicators are equal to  except 

for the case . The use of indicator flags saves 
one from doing expensive global-time-data operations to 
make decisions in each particular cell, e.g., whether it is 
going to run away in time or not. In our algorithm, such 
decision is made locally for each cell, i.e., independently on 
the other cell times. This is quite different in comparison 
with the currently existing asynchronous time-stepping 
algorithms, e.g., of Dawson and Kirby (2001) and 
Omelechenko and Karimabadi (2007), where one needs to 
track down all sets of cells which correspond to the same 
local time and which may cause significant computational 
overhead costs, especially for problems in multiple 
dimensions. 

now suppose we need the solution in all cells to be 
defined at time . Then the block-scheme for asynchrony 
method is written as the following: 

1. while : 
2. Predictor step (Figure 4) 

for  if ): 
a. compute   // of Eq. (1) 
b.  

 
Figure 4: First predictor step. 

 
3. Flux variable definition 

for  if ( ): 
a. compute ,  
b.  

 
Figure 5: Definition of flux variables on the new time 

level. 
 
4. Flux calculation 
 for  //  denotes the face between cells and   
        if (  && ):  

 if ( ):  
a.   compute  
b.    

 if ( ): 
a.   compute  
b.    

 
Figure 6: Flux calculation. 

5. Corrector step 
for  if : 

       if : 
a.   compute   
b.    
c.    
d.    
e.    
f.   compute new  
g.   , ,  
h.   if ( : , 

 

 
Figure 7: Corrector step. 

 
For solution synchronisation, the conservative 

corrector-step of the scheme is postponed for each cell 
where the fluxes have not reached the same local time at the 
new time level. This is the situation when one of the two 
adjacent cells has the next local time level that lies in 
between the current time level and the next time level of the 
adjacent cell. Because of this, the new fluxes of the cell that 
corresponds to small time steps are always updated first and 
do so more frequently in comparison with the grid locations 
which correspond to the large time steps. This condition is a 
built-in recipe for saving the computational time in the 
domain regions where the solution is less inactive and 
which correspond to large computational steps. This useful 
feature of the current algorithm is lacking in some of the 
modern multi-step algorithms in the literature. 

2.5 Conservative Flux-Correction 
Because of the time-stepping differences, the fluxes 

across the cell interface may not be evaluated consistently 
for the small and large cells unless some additional flux 
correction is performed to restore the conservation 
property. 

Figure 8 shows two adjacent cells that have different 
time-stepping. According to the asynchronous time-
stepping algorithm for time interval  (bold line in 
Figure 8) the two different flux contributions that 
correspond to the right and left sides of the same cell face  

 are: 
 

   (11) 

 
It is easy to see that the sum of the left and right fluxes 

is not identically zero, . Hence, the 
following correcting flux needs to be added to one of the 
face sides, is used: 

t
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   (12) 
Indeed, by adding the correcting flux of equation (12) to 

the new flux on the right-hand-side of eq. (8) one obtains a 
conservative asynchronous time-stepping scheme. Also, in 
addition to the conservation property of the original single-
time-step, the new conservative asynchronous scheme also 
preserves the CABARET non-oscillatory behaviour. This is 
because the fluxes for cell with large time-stepping are 
always defined from the fast-rate updated cells with the fine 
time-stepping. In these fast cells the flux update is always 
performed using the CABARET flux correction based on 
the maximum principle. 

 
Figure 8: Solution update with different local times. 

3 Numerical Examples1D wave 
propagation 

 Consider a one-dimensional acoustic wave: 

          (13) 

 
where 

(14) 

 
 The problem is solved with a non-uniform grid that has 
the ratio of the largest to the smallest cell size . 
For numerical solution, the asynchronous time-stepping has 
been implemented in a 3D CABARET Euler code on the N 
x 1 x 1 grid (x,y,z) as shown in Figure 9 where periodic 
boundary conditions in the y- znd z directions are 
imposed. 
 

 
Figure 9: Non-uniform mesh. 

 
Fig.10 shows the snapshots of the instantaneous solution 
with two different grid resolutions where the analystical 
solution is also shown for comparsion. 

 

Figure 10: Solution of the 1D acoustic wave problem: 
comparison of results of the new asynchronous algorithm 
with the analytical solution for different grid resolutions. 

 
The numerical results for the standard time stepping are 
visually undetectable from the asynchronous time-stepping 
solution. The difference between the synchronous single-
time-step solution and the asynchronous one is more 
notable for the grid convergence. Table 1 shows the errors 
of the two algorithms in several different norms. The single 
time-stepping and the asynchronous time-stepping both 
show approximately 1.5-2 order of convergence. The 
absolute errors of the asynchronous algorithm are smaller in 
comparison with the single-step method. The latter is 
because the asynchronous algorithm pushes the CABARET 
algorithm to march in time with a bigger local CFL number 
in the coarse regions of the grid. On the other hand, the 
accuracy of CABARET improves for high CFL numbers, as 
is the case with many explicit time schemes, e.g., Central 
Leapfrog or Lax-Wendroff. 

 
Table 1: The error convergence of the homogeneous 

time-stepping and the asynchronous time-stepping 
algorithm: P is pressure, U is velocity, C and L2 are  the 
standard uniform/maximum norm and integral norms, 
respectively. 

 
 The biggest driver for implementing the asynchronous 
algorithm in CABARET was the code acceleration. Hence, 
Table 2 demonstrates the gain in the algorithm speed-up 
due to the asynchronous algorithm,  in the comparison 
with the single-time-stepping and also with the maximum 
estimated speed-up . 

As expected, the theoretical maximum  is less than 
 because the asynchronous time-stepping has some 

overheads for performing additional cell cycles, 
interpolation and the flux-correction procedure. However, 
this overhead remains small and the asynchronous time-
stepping accelerates the solution by more than a factor of 3 
for this nonuniform grid configuration. 

Cells   
400 3.66 3.125 
800 3.66 3.18 
1600 3.66 3.14 

Table 2: Speed comparison, one-dimension case. 

3.2   2D Acoustic wave scattering by a 
cylinder in a subsonic free-stream 
flow 

The 2D subsonic flow around a cylinder is considered 
next. A point monopole acoustic source is specified directly 
below the cylinder center at distance 10 cylinder diameters 
from it. A uniform subsonic flow of Mach number 0.15 in 
the x-direction is imposed in the domain through the 
characteristic boundary conditions. On the cylinder surface 
a slip boundary condition is assumed. Figure 11 shows the 
computational grid in the solution domain that consists of 
the O-type mesh around cylinder that is embedded into an 
H-type grid mesh close to the external boundaries. 
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Figure 11: Grid configuration (coarse) around the 

cylinder. 
 

         
  (a)                                  (b) 
Figure 12: Instantaneous pressure fluctuation field 

solution for (a) homogeneous time-stepping, (b) 
asynchronous time-stepping algorithm. 

  
The ratio of the maximum and the minimum grid size 

for this problem is . For the numerical 
solution, the same 3D CABARET Euler code used which 
now has only 1 periodic boundary in the z-direction. 
Accordingly, the grid in the z-direction is made of just 1 
cell to keep the problem fully 2D.  

Figure 12 shows the instantaneous pressure fluctuation 
fields obtained with and without the asynchronous 
algorithm used. The two fields virtually coincide.  

Figs.13 show the root-mean-square pressure fluctuation 
directivity (p r.m.s.) normalised by the static pressure at 
infinity P0. The directivity is plotted for the circle centred at 
the acoustic source location with radius of 20 cylinder 
diameters.  Results are obtained for two mesh resolutions: 
the coarse and the fine grid. The linear scale of the fine grid 
is a factor of 4 smaller in comparison with the coarse grid. 
Fig.13b shows the coarse grid solutions for the 
asynchronous and the single time-stepping method that 
perfectly collapse to a single curve. Also, the solution with 
asynchronous time-stepping at two different grid resolution 
are in a good agreement. Fig.14 shows the corresponding 
2D p r.m.s. field. There is some noticeable asymmetry 
because of the effect of the scattering from the cylinder. 

 
        (a)                                        (b) 
Figure 13: R.m.s. pressure fluctuations for the 2D 

acoustic scattering problem: (a) coarse grid and fine grid 
solution comparison for the asynchronous time stepping, 
(b) asynchronous time vs single time step solution for same 
coarse grid. 

 

 
Figure 14: 2D field of r.m.s. pressure fluctuations from 

the coarse grid solution. 
 
For the 2D problem, the speed-up of the Euler solution 

due to the asynchronous time-stepping algorithm is a factor 
of 3, as shown in Table 3. The speed-up is almost the same 
as it was for the 1D acoustic wave problem, however, in the 
2D case the grid-size ratio is more than 3 times smaller in 
comparison with the 1D problem. This indicates that the 
relative benefits of using the new asynchronous algorithm 
should grow with the problem size. 

 
Mesh   
2D, 4 396cells 4.66 3.0 

Table 3: Speedup comparison for the 2D acoustic wave 
scattering problem. 

On the other hand, as comparison with the theoretical 
speed-up shows, there is also some computational overhead 
increase in the 2D case versus the 1D test case. This is 
likely to be associated with the increase of the cell-flux 
communications in multiple dimensions. Hence, the next 
step is to investigate how strongly the communication costs 
of the asynchronous time-stepping grow with increase in 
the number of cell fluxes typical of 3D calculations. 

3.3 Dependency of the speed-up gain on 
the cell-face-flux communications 

The following test problem is considered. A cylinder 
with a slip boundary condition is put in a steady free stream 
of M=0.15. In the x-y cylinder plane, the computational 
domain is covered by an O-type grid with the refinement in 
the vicinity of the solid boundary. The external boundary of 
the circular open computational domain is located at 50 
cylinder diameters from the cylinder centre. To check the 
solution speed-ups, the same 3D CABARET Euler code is 
used in two configurations. One is for the 2D problem 
which corresponds to 1 cell in the span-wise z-direction. 
The other one is the 3D problem that corresponds to six 2D 
grids which are uniformly stacked in the z-direction. For 
both cases, periodic boundary condition in the z-direction 
and characteristic non-reflecting conditions in the x-y 
cylinder plane are used. For investigation, 3 computational 
grids are considered: 2 grids are used for the 2D problem 
and 1 is used for the 3D problem. The 2D section of the 3D 
grid is similar to the 2D grid with a bigger disparity of the 
grid sizes/bigger stretching (2000 cells). The grid details are 
summarised in Table 4.  

Figure 1215 shows the 3D mesh and a snapshot of the 
corresponding pressure solution for the asynchronous time-
stepping algorithm. Very similar solutions are obtained for 
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the 2D grid configurations. The results of the speed-up 
gains due to the asynchronous algorithm in comparison 
with the single time-step method for each grid are 
summarised in Table 4. It can be noticed that the actual 
code acceleration due to the growing number of cell faces 
slows down with increase of the problem dimension. 
However, in comparison with increase of the number of 
cell-face communications this relative efficiency decrease 
is very moderate. Indeed, while the ratio of the number of 
the large cells to the small cells was kept the same the same 
the increase in the number of cell-face communications by 
a factor of 5 leads to a relative drop of speed-up efficiency 
of the asynchronous algorithm by some 30%. 

 
(a)                  (b)  

Figure 155: (a) 3D mesh around the cylinder, (b) pressure 
distribution 

 
Mesh      
2D, 2 000cells 50 40 1 3.6 2.3 
2D, 3 000 cells 50 60 1 3.6 2.08 
3D, 10 000 cells 50 40 5 3.6 1.67 

Table 4: Speed-up gain comparisons for the 2D and 3D 
cases. 

4. Conclusion 
 A new asynchronous time stepping algorithm is 
proposed for computational aeroacoustic problems. The 
efficiency of the new method is demonstrated for the 
CABARET Euler scheme in 1, 2 and 3 spatial dimensions. 
In particular, it has been shown that the new asynchronous 
method not only maintains the same convergence rate of the 
original second-order CABARET method but also 
decreases the absolute error because of the local time-
stepping performed closer to the optimal CFL 
condition in case of the asynchronous algorithm. The 
speed-up gain of the asynchronous time-stepping method 
generally increases with the problem size, i.e., the ratio of 
the large-size cells to the small ones, and only weakly 
depends on the increase in cell-flux communications for 
multidimensional problems. For a 2D test problem of 
acoustic wave interaction with a cylinder in a subsonic free 
stream, the new asynchronous method shows a 3-fold 
acceleration in comparison with the original single-time 
stepping for the maximum to minimum grid size ratio of 
about 10.  
 It can be further expected that the real benefits of the 
new asynchronous time-stepping method are expected for 
calculations of unsteady viscous flow problems, which 
typically require very non-uniform grids to capture fine-
viscous-scale solution details. In such problems, the ratio of 
the maximum to the minimum grid size can be as large as 
10000.  
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