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Beamforming methods use analytical Green functions to describe the acoustic propagation between noise
sources and microphones. For example, due to flow heterogeneity and complex boundary conditions, the
Green functions become analytically difficult to determine in the case of a realistic turbofan engine. The
aim of this work is to overcome the analytical Green functions determination difficulties by employing
CAA tools. In order to numerically evaluate these functions, we propose a method based on non linear
euler equations implemented in the Onera’s sAbrinA-v0 code. The noise source area is sampled as a finite
distribution of monopoles which emit simultaneously. The sound field is then computed from the source
points to the microphones. An ARMA based algorithm is applied to evaluate Green functions betweenn
each monopole and each microphone. First of all, the approach is validated from analytical simple test
cases, such as the propagation of a monopole in uniform flow. Once achieved, more delicate problems will
be processed, such as the presence of multiple sources, flow gradients and complex geometries.

1 Introduction

In the last thirty years, beamforming techniques have
become a common tool to identify the noise sources and
characterize the acoustic levels for both academic and
industrial problems. Beamforming techniques are based
on knowledge of a propagation model, between sources
and microphones, i.e. the Green’s function. This func-
tion is generally known for simple cases such as the
radiation in the free and uniform flow, annular duct
propagation or rectangular reverberation rooms [1]. To
take into account an infinite thin shear layer, Amiet
[2] proposed an improved method, largely used since
(Humphreys [3], Padois [4]) in experimental measure-
ments treatment. But in realistic industrial problems,
the propagationmedium properties are largely more com-
plex. In such cases, not using an appropriate Green’s
function can lead to spurious sources localization and
may create a bias of level estimation. The purpose of
this paper is to overcome this limitation and implicitly
to improve the analysis of experimental data by using
CAA as an estimator of Green’s function. To perform
CAA computations we chose the Onera’s sAbrinA-v0
code which solves the Euler equations in perturbation
form using high order spatial and temporal schemes. The
benefit of this method is represented by the possibility to
compute the acoustical propagation over complex flows
and realistic geometries [6]. In this paper we focus on
the validation of Green’s function estimation by using
CAA. In such a way, the method is verified on known
solutions, such as one or more monopoles propagation
in uniform flows or in the presence of infinite rigid walls.

2 Problem formulation

Let’s consider M broadband source points and a set
of N microphones within a propagation medium (see
Figure 1). The purpose is to determine the Green’s func-
tion Gm,n(ω) between each source point m and each
microphone n, via the sAbrinA-v0 solver. A first pos-
sible approach is to separately simulate the acoustical
emission of each source to the microphones. However,
this involves a prohibitive number of simulations, equal
to the number M of source points. In order to overcome
this drawback, we propose to simulate the acoustic emis-
sion of all the sources points simultaneously. The task
is then to separate the contribution of each source on
global emission in order to get Gm,n(ω). The procedure
is presented in the following section.
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Figure 1 – Schematization of the problem,
discretization of the source and listening area.

3 Methodology

The Fourier transform Pn(ω) of the microphone sig-
nal n is related to the Fourier transform of every source
signals Sm(ω) by the following equation

Pn(ω) =
[
G1,n(ω) . . .GM,n(ω)

][
S1(ω) . . . SM (ω)

]+
(1)

where + represents the non-conjugate transpose. This
system is highly underdetermined. A frequency domain
model is therefore introduced for Gm,n(ω),

Ĝm,n(ω) =
L∑

l=0

bm,n(l) exp (jωlTe) , (2)

where Te represents the time sampling used to compute
the Fourier transforms Pn(ω) and Sm(ω). The unknown
bm,n(l) coefficients are determined by minimizing the
following equation for every n

εn =

ωmax∑
ω=ωmin

∣∣∣∣∣Pn(ω)−
M∑

m=1

Sm(ω)
L∑

l=0

bm,n(l) exp (jωlTe)

∣∣∣∣∣
2

(3)
The parameters ωmin and ωmax are determined from
computational criteria. This is explained in Sec. 4.1.
In Eq. (3), the summation over the frequency range
[ωmin, ωmax] enables to provide supplementary constraints
with respect to Eq. (1). The number of parameters to be
determined is Np = LM and the number of constraints
is Nc = (ωmax − ωmin)/Δf , where Δf is the frequency
resolution of the Fourier transform. In order to get a
well-posed minimization problem Eq. (3), L is choosen
sush asNp ≤ Nc. Finally, the solution is computed using
a straightforward pseudo-inverse procedure.
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4 Numerical applications for 2D

test cases

Different test cases are considered :
– one single source, one microphone, free field medium,
– two sources, one microphone, free field medium,
– two sources, one microphone, uniform flowmedium,
– two sources, one microphone, uniform flowmedium,
infinite reflecting wall.

The main interest of these test cases is that an analyt-
ical formulation of the Green’s function is available for
comparison.

4.1 Simulation parameters

For the sake of reasonable computational time a re-
duced 2D problem is considered and a limited frequency
domain is simulated. We choose a 100-by-100 cells carte-
sian grid and ωmin = 1500 Hz and ωmax = 3000 Hz. In
order to accurately compute the acoustic signal up to
ωmax (ten grid points per λmin) a spatial step Δx = 0.01
m is taken. To ensure a non reflecting boundary condi-
tion down to ωmin, a smooth grid streching is neccessary
up to two grid points per λmax outer the Δx consistant
zone. To get a CFL number around 0.6, the time sam-
pling used is Δt = 20 μs. Each source is described as
follows,

s(�y, t) = h(�y)f(t) (4)

Theoretically, to compute the Green’s function, h(�y)
should be considered as a Dirac distribution. However,
to preserve the computational stability an extended spa-
tial source is used. A Gaussian source distribution is
chosen

h(�y) =
1

κ2
exp

(
−π

|�y − �y0|
2

κ2

)
, (5)

where �y0 is the center of the source. In order to ensure
the compacity of the source, the κ parameter is cho-
sen sufficiently small with the respect to λmin (λmin =
2π/ωmax). The optimal κ value is found to be κ =
0.3λmin. This is justified in the following.

Concerning f(t) in Eq. (4), it should also be consid-
ered as a Dirac distribution. But we limit the emission
frequency range from ωmin to ωmax, by using a filtered
broadband signal.

Generally, for the tested cases the convergence of the
CAA computation is reached after 300 Δt and 5000 Δt
are supplementary performed in order to get a frequency
resolution of Δf = 10 Hz. The total computational du-
ration is of about 10 minutes for the numerical Green’s
function estimation with a conventional computer.

4.2 Single source in free field, without

flow

A single source (M = 1) is considered in free-field
in (y1 = 0, y2 = 0) and a single microphone (N = 1)
is placed in (x1 = 0.48 m, x2 = 0), see Figure 2. The
estimated Green’s function Ĝ1,1(ω) is plotted in Figure
3. For comparison, the analytical 2D Green’s function is
superimposed

G2D(�x− �y, ω) =
1

4i
H1

0

(ω
c
|�x− �y|

)
(6)

The agreement is deemed satisfying. The slight discrep-
ancy is mainly attributed to the imperfect compacity of
the source. Indeed, for an extended noise source as de-
fined in Eqs. (4,5), the emitted acoustic pressure is given
by

P (�x, ω) = F (ω)

∫
G2D(�x− �y, ω)h(�y)d2y

The resulting frequency-domain Green’s function
P (�x, ω)/F (ω) is plotted in Figure. 3. The agreement
with the estimated Green’s function Ĝ1,1(ω) is better,
which confirms the influence of compacity effects.

Source 

Microphone 

R  =0.48m

Free Field

Figure 2 – Propagation in free field from one source
to a receiver located distance R = 0.48 m.
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Figure 3 – Results obtained for the estimation of the
Green’s funtion between a source and a receiver placed

at a distance R = 0.48

4.3 Case of two monopoles in free field

In the second case, the purpose is to estimate each of
the Green’s functions in the presence of a receiver and
two monopoles simultaneously emiting. As shown in Fig-
ure 4, the first source is placed in (y1 = 0.00, y2 = 0.00),
the second in (y1 = 0.00, y2 = 0.20) and the microphone
at (x1 = 0.48, x2 = 0.00)

Source 1

Microphone 1

R  =0.48m

Source 2

d=0.20m R  =0.68m21

11

Free Field

Figure 4 – Propagation in free field of two sources to
a receiver to the respective distances R11 = 0.48 and

R21 = 0.67
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The estimated Ĝ11 and Ĝ21 functions are respectivly
presented in Figure 5, and 6 .
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Figure 5 – Green’s function G11 between the source
m = 1 and receiver n = 1

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
−0.1

−0.05

0

0.05

0.1

frequency in Hertz

R
e[

G
]

Green’s function estimated by simulation

Analytical Green’s function for an extanded source

Analytical Green’s function for a point source

1400 1600 1800 2000 2200 2400 2600 2800 3000 3200
−0.1

−0.05

0

0.05

0.1

frequency in Hertz

Im
[G

]

Figure 6 – Green’s function G21 between the source
m = 2 and receiver n = 1

The results obtained for the two estimated functions
show the same agreement as the one obtained for the
previous case. We note a slight discrepency with the
Ponctual Green’s function and a good accordance with
the Gaussian source Green’s function. In this case, each
source contribution has been separeted using the esti-
mation model in order to get all the Green’s functions.

4.4 Case of two monopoles in uniform

flow

A uniform flow (Mach M = 0.2) is introduced into
the previous case in the positive direction �x1, see Figure
7. The Green’s function obtained G11 between m=1 and
n=1 is plotted in Figure 8 . This results is compared to
the analytical 2D Green function G2Dflow(�x− �y, ω) with
uniform flow into the positive direction �x1 expressed as
follow :

G2Dflow(�x− �y, ω) =
1

4iβ
H1

0

(
k0

(
S0

β2

))
e

ikM(x1 − y1)

β2

(7)
with

{
β2 = 1−M2

S2
0 = β2(x2 − y2)

2 + (x1 − y1)
2 (8)

As previously the results is compared with the de-
duced analytical Green’s function for an extended source
given by :

H(�x− �y, ω) = P (�x, ω)/F (ω)

where

P (�x, ω) = F (ω)

∫
G2Dflow(�x− �y, ω)h(�y)d2y

The agreement is found satisfying. As above we note
a slight better accordance with the extended source Green’s
function due to the the influence of compacity effects.
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Figure 7 – Propagation of two sources in uniform flow
M = 0.2 in the direction �x1
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Figure 8 – Green’s function G11 between the source
m = 1 and the receiver n = 1
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4.5 Case of two monopoles in uniform

flow with an infinite reflector

In this last example, an infinite reflector is added to
the previous case as shown schematically in Figure 9.
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R  =0.48m

Source 2

d=0.20m R  =0.68m21

11

M=0.2

Infinite reflector
d=0.04m

Figure 9 – Propagation of two sources in uniform flow
M = 0.2 in the direction �x1 in the presence of an

infinite reflector

The estimated Green’s function is plotted in Figure
10. To compare, an analytical Green’s function com-
puted by the source-imagemethod is superimposed. More
precisely, the source image is considered as the symme-
try of the source relative to the reflector. The resulting
function is expressed as the sum of the Green’s function
between the source and receiver, and the one between
the source image and receiver :

Greflector(�x− �y, ω) = G(�x − �y, ω) +G(�x− �yimage, ω)
(9)

As expressed below, the analytical Green function
for an extanded source is deduced from (9) and super-
imposed Figure 10.

Hreflector(�x− �y, ω) = P (�x, ω)/F (ω)

where

P (�x, ω) = F (ω)

∫
Greflector(�x− �y, ω)h(�y)d2y
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Figure 10 – Green’s function G11 between the source
m = 1 and the receiver n = 1, in presence of a uniform

flow and of a reflector

The obtained results show a good agreement with
the analytical Green’s function. We note a slight big-
ger amplitude discrepancy for the point source Green’s
function than in the previous examples. This test case
seems to be more sensitive to the compacity effects.

5 Conclusion

The present study aims at assessing new approach to
beamforming where the Green’s function used is evalu-
ated by CAA to take into account complex propagation
effects. In this paper we propose to simulate the acous-
tic emission of all the sources points simultaneously to
the microphones through the complex medium. The re-
sults obtained are then processed using a minimization
algorithm to estimate the whole Green’s function be-
tween each point of the plane source and each micro-
phone. To assess the methodology, the results obtained
are compared to known solutions, such as one or more
monopoles propagation in uniform flows or in the pres-
ence of infinite rigid walls. In all proposed tests cases,
estimated Green’s functions show good agreement with
the analytical Green’s functions, allowing at first to val-
idate our approach. In subsequent work, the estimated
Green’s functions will be used to perform simulation of
beamforming. We will address in particular the influence
of different simulation parameters on the imagery re-
sults. The method will be next computed on more com-
plex cases, not known analytically, as well as on real
cases from wind tunnel testing.
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