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Accurate data on the boundary conditions and hydraulic flows in urban water infrastructure, rivers and canals are 
required to predict accurately the probability of flooding, structural damage, ground subsidence incidents and to 
optimise the rehabilitation work. Airborne acoustic waves can provide reliable means to measure remotely the 
hydraulic, operational and structural characteristics of this infrastructure. This talk describes a new acoustical 
technology developed at the University of Bradford which can be used to detect and locate damage, blockages, 
sediment deposition, water level variations and hydraulic energy losses in underground networks of pipes. It 
explains how various pattern recognition methods can be applied to discriminate between the acoustic signatures 
recorded for a range of conditions and to detect a change. The talk also presents some field work results which 
prove that the proposed acoustical technology allows for a very rapid, remote inspection of urban water 
infrastructure which can partly replace more conventional and slower CCTV inspection. 

1 Introduction 
Acoustic methods for the inspection of pipes to locate 

blockages and damage have been used extensively with 
primary applications related to the quality control of pipes. 
This technology is adopted in petro-chemical engineering, 
by the oil and gas, and water industries, and in the 
manufacturing of musical instruments (e.g. [1,2]). Unlike 
many other inspection methods such as the CCTV, acoustic 
methods can be fast and non-invasive.  

The measurement technique we present in this paper is 
based on the analysis of acoustic signals that are reflected 
by various types of irregularities typically found in a pipe 
which is either dry or only partially filled with water. These 
reflections carry sufficient information to identify structural 
defects, sediment blockages, lateral connections, pipe ends 
and the level of water which this pipe carries. Traditionally, 
sound pressure data are used to carry out the feature 
extraction and classification analysis (e.g. [1,2]). The 
technology which we present here makes use of acoustic 
intensity data. Unlike acoustic pressure, acoustic intensity is 
a vector which direction is perpendicular to the wave front, 
i.e. the direction in which the acoustic energy propagates. 
This quantity is very sensitive to the changes in the medium 
properties and to the changes in the boundary conditions 
along the path of the sound wave. Sudden changes in the 
medium properties result in acoustic reflection and 
scattering. A main advantage in the acoustic intensity 
approach is that it can be used to separate waves reflected 
in a particular direction. These data can be used more 
robustly in a suitable condition classification model than 
the acoustic pressure data.  

The purpose of this paper is to explain the basic 
technology which has been developed at the University of 
Bradford to detect changes in a pipe carrying a flow of 
water and to illustrate a range of conditions which affect 
propagation of acoustic waves in a pipe. This technology 
combines the acoustic instrumentation, signal processing 
algorithms and pattern recognition methods.  

2 The acoustic theory 
There are a number of problems in using acoustic waves 

for the detection of the conditions in live underground 
pipes. Although the technology for the pipe bore 
reconstruction has been developed a while ago (e.g. ref. 
[2]), it is impractical to use it in a relatively large diameter 
partially-filled underground pipes which cannot be 
terminated from one end. The only practical way to survey 
this type of pipes is to insert an acoustic sensor through an 
inspection manhole and secure it just above the flow of 
water as shown in Figure 1. Since it is common to inspect 
pipes in the dry flow conditions, i.e. when the level of water 

is relatively low, a large proportion of the pipe 
circumference is relatively dry and it can be inspected with 
airborne acoustic waves. Because of the huge mismatch 
between the impedance of air and that of the pipe wall 
material, the coupling between the airborne waves and 
structure-borne waves in the pipe wall is very small and can 
be neglected in the model. In this way, the acoustic wave 
reflections which occur due to the cross-sectional changes 
and wall impedance variation can be timed in terms of the 
airborne wave velocity, which is a relatively 
unsophisticated process.  

A main problem here is that the sensor cannot be 
inserted far enough into the pipe so that the reflected waves 
arrive on to the sensor microphones from a plurality of 
directions as shown in Figure 1. These reflections cannot be 
separated if only one sensor microphone is used. An 
alternative here is to use a directional array of microphones. 
However, this is impractical to implement in a pipe as the 
length of such an array is required to be much longer than 
the wavelength. This instrument will be long and difficult 
to deploy and maneuver in the manhole and pipe 
environment.  

 
Figure 1: The principle of the acoustic sensor deployment 

in a life underground pipe. 
 

One simple solution to this problem is to use the 
acoustic intensity probe. In this probe signals from two or 
more closely spaced microphones can be combined and 
used to determine the amplitude of the reflected waves and 
the direction from which these waves have arrived. 
Therefore, a key element of this technology is the 
calculation of the instantaneous acoustic intensity vector, 
which is carried out by combining the acoustic pressure 
signals from an array of closely spaced microphones. The 
instantaneous intensity vector is given by the following 
expression 
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where ( )tu is the time-dependent acoustic (particle) velocity 
vector, n the normal that coincides with the direction of 
sound propagation and )(tp  is the acoustic pressure 

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

588



measured at the receiver position. The main difficulty here 

is to determine the exact value of the 
n∂
∂p  quantity and its 

approximate value is commonly used so that equations (1) 
are rewritten as 
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where ( )mp t   and ( )mp t  are the sound pressures measured 
on two microphones in the array that are separated by the 
distance λ<<Δ  , λ   being the acoustic wavelength. 

Sound propagation in a cylindrical pipe above the 
frequency of the 1st cross-sectional mode is a dispersive 
phenomenon. In this frequency range sound waves can 
propagate in directions other than normal with respect to 
the cross-section of the pipe, and the sound pressure 
depends strongly on the source and receiver positioning. 
Therefore, it makes sense to study the behaviour of the 
sound intensity in the plane wave regime i.e. in the 
frequency range below the 1st cut-on frequency of the pipe. 
In this way, the sound pressures recorded with the 
microphone array can be conditioned and filtered in several 
narrow frequency bands using a suitable digital filter. The 
intensity response between microphone m and microphone 
n in the microphone array can then be determined for each 
individual frequency band according to expression (2). The 
result can be divided by the norm, i.e. 

[ ]
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−

≤
= −   (3) 

where 0T  being some time limit which relates to the 
duration of the incident pulse. This normalisation procedure 
ensures that the maximum intensity in the incident sound 
wave is equal to or less than -1. In the case, when the 
microphone array is linear and it is orientated in the 
direction of plane wave propagation, the normalised 
intensity response for individual microphone pairs can be 
compensated for the time shift, mnτ . This time shift is 
present in the intensity response because of the variable 
distance from the speaker diaphragm to the centre of a 
microphone pair in the array, i.e. 
 

( ) ( ) /mn mn mn mne t I t Iτ= + .  (4) 
 

The normalized and time-shift compensated intensity 
responses for several microphone pairs can then be 
combined coherently to obtain the mean intensity response 
function 

,
( ) ( )mn

m n
e t e t=∑  .   (5) 

In this way the effects of sound reflection from the pipe 
termination near the acoustic instrument and mismatch 
errors are reduced.  Only the positive (reflected) part of the 
mean intensity response function (5) is needed for the pipe 
condition characterization which represents the sound 
intensity reflected from the irregularities in the pipe, i.e.  

( )( ) ( ) ( ) / 2e t e t e t+ = + .  (6) 

3 The instrument 
The instrument which was developed at Bradford to 

implement the acoustic technology detailed in section 2, 
consists of an acoustic sensor which comprises a 
microphone array and a speaker. The instrument also 
includes a data acquisition module, ruggedized laptop and 
cables (see Figure 2). The spacing between the 
microphones in the microphone array is chosen to be 
considerably less than the wavelength to allow for the 
intensity measurements. The microphones can be spaced 
non-equidistantly to optimize the accuracy of the intensity 
measurements in a broad frequency range. An array of non-
equidistantly spaced microphones enables to obtain a 
maximum number of microphone pairs separated by 
unrepeated distances. A water resistant speaker which is 
capable of reproducing a broad frequency range is used as a 
source of sound. Signal generation for excitation, 
acquisition and processing are controlled with the PC via an 
electronic microcontroller which is connected with a USB 
cable (see Figure 2).  

 

 

Figure 2: Instrument prototype equipment. 

A sine chirp is used as an excitation signal. This signal 
is time-invariant and it is less prone to harmonic distortions. 
This kind of stimulus is well suited for measurements in the 
presence of a dynamically rough water surface and high 
levels of background noise. Once received on a 
microphone, this signal is deconvolved to obtain an 
acoustic pressure impulse response using the procedure 
detailed in ref. [3]. It can be filtered and used in the 
intensity analysis detailed in the previous section. An 
example of the resultant acoustic intensity response  
calculated for a clean 150mm pipe (eq. (6)) is shown in 
Figure 3. A reflection from the pipe end is visible clearly in 
the intensity response at 14.8m.  
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Figure 3: The positive intensity response for a clean, 14.8m 
long pipe with 150mm diameter (150-300 Hz range). 

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

589



4 Pattern recognition and 
classification  

It is impractical to apply the bore reconstruction 
methods (e.g. [1,2]) in a partly-filled pipe buried beneath 
the ground. A main problem here is a lack of good quality 
reference pulse which is required for the layer peeling 
method with which the exact pipe cross-section can be 
reconstructed as a function of distance. However, it is 
practical to collect a number of acoustic signatures which 
can be then used to construct a signature library (a 
database) which can then be adopted in a correlation 
analysis or used with a suitable statistical method to 
recognise with a good degree of probability a particular 
condition which is typically for a buried, partly-filled pipe.  

 

Figure 4: The acoustic signature of a typical pipe end 
presented in the form of a spectrogram. 

An example of an acoustic signature is shown in Figure 
4 which presents the spectrogram of the acoustic reflection 
from the end of a clay pipe. The temporal and spectral 
characteristics of this reflection are unique to the end of a 
150mm pipe and these can be exploited to recognise the 
pipe conditions from the recorded acoustic intensity 
response in way similar to that automatic voice recognition 
is carried out. Two particular algorithms can be used for 
this purpose: direct cross-correlation in the time and 
frequency domains and hidden Markov models. 

The cross-correlation algorithm proposed here involves 
finding the normalized 2-D correlation function 

 
max max

max max max max

0 0

0 0 0 0

( , ) ( , )
( , )

( , ) ( , ) ( , ) ( , )

T

s

T T

s s

e e t d d
r t

e e t d d e e t d d

ω

ω ω

τ ϖ τ ω ϖ τ ϖ
ω

τ ϖ τ ω ϖ τ ϖ τ ϖ τ ω ϖ τ ϖ

+ +

+ + + +

− −
=

− − − −

∫ ∫

∫ ∫ ∫ ∫
(7) 

where  ( , )e t ω+  is the frequency-dependent mean intensity 
response function calculated from the measured data and 

( , )se t ω+   is a mean intensity response function representing 
a defect signature selected from the library (signature 
database). The bounds in the integrals in expression (7) are 
selected to ensure that the correlation analysis is carried out 
over a representative temporal period, maxT ,  and range of 

frequencies, maxω  , which are sufficient to capture the key 
features of a particular condition in the sewer pipe. In the 
above analysis a threshold of ( , )r t ω can be set to trigger a 

match between the recorded data and a signature stored in 
the signature database.  

Alternatively, the signature of an irregularity in a pipe 
can be used as the physical process which can be described 
probabilistically with a hidden Markov model (HMM)4. 
The statistical properties of the reflected sound wave 
undergo a series of transitions and different spectral 
patterns can associate with different type of irregularity and 
other conditions present in the pipe at the time of 
measurement. These spectral and temporal patterns can be 
characterized by distinctly different statistical properties, 
which are in turn reflected in transitions of the defect signal 
from one statistical state to another.  

In order to create a HMM, one needs to guess the 
number of sources that emits observation and the number of 
states with which these sources can be associated. Each 
state is an emitting source statistically described by the 
respective probability density function. Therefore, the 
probability density describing each of these states  is 

( | ) ( | )t tb k i P y k x i= = =  where  i =1,2,..,S, S is the 
number of states, tx  is the state random process, 
1 k K≤ ≤ , K is the number of distinct observation 
symbols per state, ty  is the observation random process. 
Since the process undergoes random jumps from one state 
to another, the model should also have access to the set of 
state transition probabilities,  1( | ) ( | )t ta i j P x i x j−= = =  
where i,  j =1,2,..,S, and ( | )P i j  is the probability of the 
system jumping from state j to state i. Finally, since any 
observation sequence must have an origin, it is necessary to 
know the probability of the first observation being emitted 
by state i. The K-by-S observation probability matrix, B, the 
S-by-S state transition matrix, A, and the initial probability 
matrix,π , are then given by  
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 (8) 
In this case, we can design a HMM, ( ) , ,B Aλ π= , and 
examine whether the probability (likelihood) ( | )P y λ  is 
sufficiently high for this model to represent the observation 
sequence, 1 2{ , ,..., }Ty y y y= . In a simple word, we 
assume that one of the existing hidden Markov models 
which we build would be able to reproduce the pattern in 
the data recorded in the field. In the case of sound 
propagation in a pipe with a defect, the acoustical signature 
of this defect is associated with the HMM via the highest 
likelihood for which the defect can be recognized. 

5 Detection of change  
In practical applications to underground pipe 

management it is often desirable to determine the degree of 
change which a section of a pipe has experienced over time. 
Such operational and structural changes are often not 
localised and occur gradually along the whole length of the 
pipe resulting from the development of longitudinal cracks 
and continuous sedimentation. At some critical instant a 
small change can result in a service failure (which may then 
contribute to a flood event caused by a blockage or a 
structural pipe collapse). A small change in pipe conditions 
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is notoriously hard to detect directly, particularly when the 
pipe consists of several, poorly joined sections.  Thus, the 
pipe is not simple or ‘ideal’.  If the acoustic measurement is 
taken from an open end of the pipe connected to an 
inspection cavity of complex geometry, then it can be 
extremely difficult to separate the effects of the cavity from 
that of the pipe via the acoustic response. Thus, the 
impedance conditions can be difficult to model.  

An alternative method here is to use the so-called 
matched field processing (MFP)5 which is able to detect 
changes in a continuous or non-continuous air-filled pipe. 
The MFP concept is relatively simple. We record the 
acoustic response of a pipe, ( )mf t using 

1,...,m N= number of microphones and calculate its short-
time Fourier transform 

0

0

0( , ) ( ) ,
t K t

i t
m m

t

F t f t e dtωω
+ Δ

−= ∫  

where 0t is an instant on a sliding time scale. If the pipe 
changed, then its acoustic response should also change. The 
new acoustic response, ( )mg t , which we will record, 

should be dissimilar to ( )mf t . The degree of similarity 
between these two states can be estimated using the 
ambiguity surface function which is given by the following 
expression 
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where  

0

0
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i t
m m

t

G t g t e dtωω
+ Δ

−= ∫  and * denotes the complex 

conjugate. It is easy to illustrate that this function is 
bounded 00 AMS( , ) 1tω≤ ≤ , and that 0AMS( , ) 1tω =  
corresponds to the perfect match. The above analysis can be 
applied either to the acoustic pressure or instantaneous 
intensity data. The only requirement here is that the number 
of microphones (receivers) should be 2N ≥ .  

6 Estimation of the water level 
The acoustic impulse response recorded in a pipe can also 
be used to determine the level of water or wet sediment 
above which the sensor is installed. The level of water or 
wet sediment affects the frequencies of cross-sectional 
modes that can propagate in the pipe. At these frequencies 
the modal phase velocity is close to the infinity and the 
acoustic field in the pipe has characteristic maxima that can 
be detected with a narrow-band frequency analysis. In this 
way the resonance peaks in the frequency spectra in the 
recorded acoustic impulse response can be related to the 
water/sediment level. Figure 5 presents the dependence of 
the frequency of the first cross-sectional mode in a 150mm 
pipe on the level of water. Clearly, the modal frequency 
increases with the increased level of water. This results is 
measured in the laboratory and predicted using a finite 
element model in which the boundary admittance was 

assumed 0β = . This dependence can be expressed with the 
following simple expression  
 

20.05874 80.11, 0.994a ww f R= − = , (9) 
 

which is likely to scale for pipes which diameter is not 
equal to 150mm because the frequency of the 1st cross-
sectional mode 0.59 /wf c d= when 0aw = . Here c is the 
speed of sound in air and d is the pipe diameter. 
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Figure 5: The measured and predicted relations between the 
frequency of cross-sectional modes and the level of water in 

a 150mm pipe. 

7 Estimation of sediment level  
A common problem for underground pipes is the 

development of a sediment layer at the pipe bottom, wall 
corrosion, erosion or incrustation. The effect of these 
changes on the acoustic wave propagation is somewhat 
similar: an apparent increase in the attenuation and a shift 
in the frequency of cross-sectional modes which can be 
excited in the pipe. The solution of this problem is to 
combine a finite element and normal mode decomposition 
techniques to calculate the acoustic pressure field, p. The 
acoustic pressure in the pipe can be determined from 
following matrix equation  

 
0][][][ 2 =++ pMkpDjkpK , (10) 

 
where k is the wavenumber and 

∫∫ ∇•∇−=
S

ji dxdyNNK ][ , ∫=
l

ijji dlNND β][ , 

∫∫=
S

ji dxdyNNM ][ , are the stiffness, damping and mass 

matrices, respectively ),....2,1,( Vji = . In the above 
expressions Ni are the interpolated shape functions in the 
finite element formulation, ijβ  are the values of the 
normalised surface admittance, S is the cross-sectional area 
and l is the circumference of the duct.  

The inverse admittance problem is defined such that if 
the modal frequencies and their corresponding attenuations 
are given, then the surface admittance of the absorbing 
lining needs to be reconstructed. We assume that the 
geometry of the duct and the properties of the fluid content 
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(e.g. air) are known, i.e. the matrices [ ]K  and [ ]M  are 
predetermined and complete. We use the optimisation 
principle and equation (10) to minimise the following 
objective function ( )f x  

 

{ }( )2min ( ) det([ ] [ ] [ ]) , [ ] Nf abs K ik D k M D R= + + ∈x
(11) 

 
where [D] is the unknown damping matrix that contains the 
complex values of the surface admittance associated with 
the existence of the porous sediment or wall imperfections. 
Here x  is the parametric vector related to the unknown 
value of the complex surface admittance and the 
wavenumber k  is associated with the modal frequency and 
its attenuation. It is expressed by 

 
2 / / 8.685mn mnk f c iπ α= × + × ,       (12) 

 
where mnf  and mnα  are the modal frequency and 
attenuation, respectively. If the acoustic lining is uniform, 
then only one frequency-dependent surface admittance for 
the boundary needs to be calculated. In this case N = 2 and 
there are two sets of variables in equation (10): one is for 
the real part and another is for the imaginary part of the 
admittance. The problem becomes much more complicated 
if more elements with different values of the surface 
admittance ij vwβ β≠ , ,i v j w≠ ≠ are introduced as new 
unknowns. A simple wave to solve optimisation problem 
(11) is to use the direct search method6. 
 

 

Figure 6: The method for sensor deployment in a live 
(300mm) sewer in the field. 

The above method was applied to invert the parameters 
of a 70mm thick layer of marble stone which was laid on 
the bottom of a 20m long, 600mm diameter concrete pipe 
as shown in Figure 67. The relative sound pressure level 
was acquired as a function of time. The acoustic pressures 
were recorded on an array of microphones, filtered using a 
6-th order Butterworth digital pass-band filter that was 
tuned to the frequencies of the first three cross-sectional 
modes. The width of the spectral window was set to 330 – 
370 Hz for mode (1-0), 540-620 Hz for mode (2-0), 680-
730 Hz for mode (0-1). The comparative data were: (i) the 
admittances measured by the standard impedance tube 
method; (ii) admittances predicted by the acoustic 

impedance model8. The higher-order modes were neglected 
because of the ambiguity caused by stronger modal 
coupling due to sediment roughness and progressively non-
locally reacting behaviour of the sediment. The results of 
this analysis are summarised in Table 1, which presents the 
inverted real and imaginary parts of the surface admittance 
and the surface admittance data determined with the direct 
means.  

Table 1: Comparison of the acoustic admittances obtained 
by the three methods for the 70mm thick layer of marble 

stone in the 600mm pipe. 

Mode 
Admittance by 

inverse method 

Admittance by 

tube measurement 

Admittance by 

Voronina model8  

(1-0) 
(360Hz) 

0.012+0.156i 0.0136+0.177i 0.0130+0.162i 

(2-0) 
(600Hz) 

0.037+0.236i 0.040+0.256i 0.035+0.225i 

(0-1) 
(714Hz) 

0.0453+0.13i 0.056+0.285i 0.051+0.210i 

 
The results shown in Table 1 suggest that the inversed 
values of the acoustic surface admittance agree well in 
general with those measured or predicted directly. 
Specifically, the maximum relative error in the inversed 
real and imaginary parts of the acoustic surface admittance 
is limited to 11% in the case of the (1-0) and (2-0) modes. 
In the case of the (0-1) mode, the relative error in the real 
and imaginary part of the admittance is 19% and 54%, 
respectively. The loss of accuracy is mainly attributed to 
the effect of sediment roughness which can be accounted 
for if the mean roughness height, ε , is included in the 
expression of the admittance as suggested by Attenborough 
[9]  
 

0rough smoothikβ ε β= − +  ,   (13) 
 
where smoothβ is the surface admittance of a perfectly 
smooth sediment layer, and 0k  is the wavenumber in air. 
This relation suggests that the mean roughness height of the 
marble stone layer in the 600mm concrete pipe is required 
to be 12mm in order to compensate for the 54% 
discrepancy between the inversed and directly measured 
values of the imaginary part of the acoustic surface 
admittance. This compensation is acceptable considering 
the characteristic dimension of the marble stones in the 
sediment is 7.3mm. 

8 Condition detection and 
classification  
The acoustic pipe inspection system presented in the 
previous sections has been tested in the laboratory and in 
the field. In the laboratory the system was tested to 
discriminate between a blockage, lateral connection and the 
pipe end. It was also tested to detect a change in the pipe 
and to monitor the evolution of a sediment build-up in the 
presence of flow. Figure 7 shows the method of sensor 
deployment in a live sewer in the field. The sensor is 
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attached to an extendable pole which is lowered in the 
manhole chamber so that the speaker and the microphone 
array are positioned above the flow level.  
 

 

Figure 7: The method for sensor deployment in a live 
(300mm) sewer in the field. 

 
Figure 8: The acoustic intensity spectrogram recorded in a 

14.8m clay pipe with a blockage. 
 
Figure 8 shows the spectrogram of the acoustic intensity 
response obtained in the laboratory for a 14.8m long, 
150mm diameter clay pipe with a 25% blockage. The 
spectrogram shows two clear reflections: at 8m from the 
sensor and at 14.6m from the sensor. These reflections 
correspond to the blockage and open end of the pipe, 
respectively.  
 

 

Figure 9: The acoustic intensity spectrogram recorded in a 
14.8m clay pipe with a blockage. 

Figure 9 presents the view of the software GUI interface 
which was developed for operating in the field. This 
interface incorporates all the functions which are discussed 
in the previous chapters. The spectrogram shown in Figure 
9 was recorded in a clean, 150mm diameter live sewer near 
Salzburg in Austria.  The first reflection which occurs at 5m 

from the sensor end corresponds to a lateral (house) 
connection. The second reflection which occurs at 37m 
corresponds to the farther pipe end.   

 

Figure 10: The ambiguity surface calculate for a 14.8m clay 
pipe with a blockage at 8m. 

Figure 10 presents the ambiguity surface for the 150mm 
clay pipe with a 25% blockage at 8m. The result presented 
in Figure 10 was obtained by recording the response of a 
clean pipe and using it as a reference data in eq. (9) against 
that which was recorded after a bag filled with silt sediment 
had been deposited in the pipe. The result illustrates clearly 
the position at which this change in the pipe conditions has 
developed and the colour intensity illustrates the severity of 
this change.  

Table 2 presents the statistical data on performance of 
the two cross-correlation pattern recognition and 
classification methods presented in section 4. This 
algorithm was applied to the acoustic data collected in the 
150mm pipe from 30 independent experiments. The 
following abbreviations are adopted here: PE – pipe end; 
BK –blockage; LC – lateral connection. The presented data 
for r< >  correspond to the percentage of correct 
classifications, which is the ability of the cross-correlation 
algorithm to match the data with a particular condition in 
the presence of a variable flow level, variable sensor 
position and intermediate artefacts introduced into the path 
of the propagated acoustic wave. r∂ corresponds to the 
standard deviation in the cross-correlation data taken over 
the whole range of experiments.  

Table 2: Performance of the cross-correlation algorithm. 

File 
group 

Cross-correlation of test signatures with the 
signatures stored in the library (i.e. pipe end , 

blockage and lateral connection) 
r< >  r∂  PE BK LC 

PE 96.5 71.4 21.4 9.4 
BK 80.8 99.2 1.4 1.6 
LC 67.9 11.3 88.9 33.3 
 
Table 3 presents the data which illustrate the ability of the 
hidden Markov model to identify three different conditions 
in a 150mm clay pipe. The presented numerical values 
correspond to the logarithmic measure of the likelihood 
calculated for the guessed condition according to the 
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method detailed in section 4. The smaller the value of 
log ( | )P y λ< > , the smaller the likelihood that the data 
would match that particular condition. The standard 
deviation in the likelihood, ( | )P y λ∂ , corresponds to the 
variability in ( | )P y λ  taken over the range water flow 
levels, sensor positions and intermediate conditions in the 
pipe.  

Table 3: Performance of the hidden Markov models. 

Likelihood of test signatures with three Hidden 
Markov Models (i.e. pipe end , blockage and lateral 
connection) 

log ( | )P y λ< >  
guess ( | )P y λ∂  

PE BK LC 
-18.7 -68.9 -224.7 PE 0.26 
-252.0 -22.8 -242.0 BK 2.83 
-231.2 -268.8 -22.7 LC 4.36 

 
The same two algorithms have been applied to the data 
collected in the field around the UK and in Austria in 
150mm, 225mm and 300mm diameter pipes. The results of 
the pattern recognition data analysis were compared against 
the CCTV reports provided by the water and sewer 
inspection companies. The results show that the cross-
correlation algorithm is able to recognise correctly 67% of 
the lateral connection and pipe end conditions. The results 
also show that the hidden Markov model is more robust 
because it can recognise correctly 94% of these conditions.  

9 Estimation of hydraulic roughness  
The water industry uses mathematical models for water 

pipes to predict flow depth, velocity and hydraulic capacity. 
These models are essential tools in the design process for 
rehabilitating existing ageing pipes and assessing their 
propensity for flooding and discharges to watercourses. Bed 
sediments, pipe obstructions and general pipe roughness 
can considerably affect the theoretical predictions. A major 
problem for sewer flow modellers and operators is to define 
the physical value of the roughness coefficient, ks, that 
cannot be measured directly. This value is need to 
determine the hydraulic energy (head) loss, fh , from which 
the water flow level and velocity can be estimated for a 
given flow discharge. Where sediment deposits exist, they 
simultaneously constrict the cross section of the sewer, and 
increase the effective boundary roughness, increasing the 
water level for a given discharge, increasing the hydraulic 
head loss and reducing the pipe flow capacity.  

Acoustic technology provides the possibility to link the 
acoustic reflection strength of sediment deposited in a pipe 
with the hydraulic head losses. If the wetted cross-section 
of the pipe undergoes a change, then the water flow is 
likely to be affected and the water surface will no longer 
appear uniform. In the case when a blockage is deposited at 
the bottom of a partly-filled pipe, the flow level will 
inevitably increase in the vicinity of this blockage so that 
the water can continue flow over the top of this blockage as 
along as the blockage does not occupy the total cross-
section of the pipe. The hydraulic effect of a blockage is 
shown in Figure 11 which presents the experimental data on 

the water flow level measured in a 150mm pipe in the 
presence of blockages with variable height.  
 

 
Figure 11: Water depth values for clean and blocked pipe 

for flow discharge of Q=0.42 litre/s, pipe diameter 150mm. 
 
Clearly, an apparent increase in the water level caused by 
the presence of the blockage inevitably results in a 
proportion of the energy in the incident acoustic wave 
reflected in the direction of the sensor. Here, it is logical to 
assume that the greater the variation in the water level 
caused by the presence of a local blockage, the greater the 
hydraulic head loss and the reflected acoustic energy. In 
this way, the reflected acoustic energy and the hydraulic 
head loss can be linked to determine non-invasively the 
hydraulic roughness of a particular section of the pipe. 
Figure 12 shows the spectrogram of the acoustic intensity 
response reflected from a 15mm blockage completely 
surrounded by a flow of water. 
 

 
Figure 12: The intensity spectrogram for the 150mm pipe 

with a 15mm high blockage for 1.00 litre/s discharge. 
 
The intensity shown in Figure 12 can be integrated to 
determine the reflected acoustic energy, i.e. 
 

,

( , )T
t

E e t dt d
ω

ω ω+= ∫∫ .   (14) 

 
Figure 13: The relation between the energy in the reflected 
acoustic wave and the hydraulic head loss in the 150mm 

pipe. 
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The hydraulic head loss can be estimated from the data 
shown in Figure 11 using the Darcy- Weisbach equation10 
 

2
21 8 ffV L gRh=    (15) 

 
where f is the Darcy friction coefficient, 21L  is the length of 
the pipe containing the blockage,  V is the local mean flow 
velocity, g is the gravity acceleration and R is the 
hydraulic radius.  

Figure 13 presents the results of this analysis for a range 
of hydraulic conditions in the 150mm pipe. The results are 
presented here in terms of the dimensionless quantities 

,( ) /f f clean fh h h−  and ,0( ) /T T TE E E− , where ,f cleanh  

and ,0TE are the hydraulic head loss and the reflected 
acoustic energy measured in the pipe without any blockage, 
respectively. The data presented in Figure 13 suggest that 
unambiguous relations exist between the hydraulic head 
loss and acoustic energy reflected by a local blockage in a 
partly-filled pipe. The use of such simple sensing 
technology offers the opportunity to monitor pro-actively 
developing of blockages and calibrate better the numerical 
tools for modelling the hydraulic flow.   

10 Conclusions  
Acoustics provides a very powerful tool for the 

inspection of hydraulic, structural and operational 
conditions in pipes and open channels. Acoustic methods 
are remote and non-invasive. A new technology and 
instrumentation based on acoustic intensity data has been 
developed and used to inspect live underground water pipes 
in the laboratory and in the field. This technology is robust, 
non-invasive and rapid. It combines acoustics, signal 
processing and pattern recognition methods. Unlike the 
CCTV inspection, the speed of the acoustic survey does not 
depend on the length of the pipe and only limited by the 
speed with which the acoustic data can be communicated 
and processed. The currently technology enables the 
inspection process to be completed within one minute. 

It has been shown that the recorded acoustic signals can 
be processed in a plurality of ways. For this purpose 
suitable software and GUI interface have been developed to 
be used on a ruggedised tablet PC. Acoustic data can be 
easily stored to form a digital database of acoustic 
signatures. These data, together with the signatures 
recorded in a database, can then be used to detect changes 
in a pipe and estimate their severity. The acoustic signals 
can also be used to locate blockages and structural defects, 
determine the level of water, amount and nature of 
deposited porous sediment and to estimate in-situ the 
hydraulic energy losses in live sewer pipes. The latter 
cannon be done at present with any other method.  

Live pipes are very complicated, dynamic systems 
which require robust signal processing and pattern 
recognition methods to measure accurately and understand 
well the nature of overall change and to discriminate 
between localised changes. As a result, there are several 
challenges which are yet to be overcome. Firstly, it is 
difficult to use low-frequency acoustic waves (i.e. the plane 
wave regime) to discriminate between multiple defects 
which are closely spaced in the pipe. Secondly, it is 
difficult to make use of higher frequencies and higher order 

modes because of the strong variation in the acoustic 
pressure with the sensor position beyond the first cross-
sectional mode. Thirdly, the presence of porous sediment 
results in a considerable acoustic attenuation and the 
pressure in acoustic waves reflected from farthest locations 
in the pipe can be weakened below the noise threshold. 
Fourthly, more work is needed to develop acoustic sensors 
which are extremely robust and completely water-proof.   
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