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Rattle noises encountered in automotive systems such as seats or front panels are gaining more and more impor-

tance in the automotive industry. Recent progresses in the field of noise reduction in automotive cabins, combined

with the emergence of new electrical/hybrid vehicles and the need for mass reduction, has emphasized the appear-

ance of this new class of noise, which was masked in the past. Rattle noises are studied here using a continuous

vibro-impacting system under forced excitation. An experimental set-up composed of a beam impacting barrier

has been designed in order to reproduce this phenomenon. Periodic and apparent chaotic rattles are occurring at

various combinations of environmental parameters such as excitation frequency, initial presence of clearance or

pre-load between the impacting system and its associated barrier, and contact stiffness and damping. Simulated

bifurcation diagrams are obtained representing the overall behaviour of the vibro-impacting system and are then

compared with experiments.

1 Introduction
Noises that can be found in an automotive cockpit are

generally induced by the following three class of noise sources:

• Aero-dynamical noise

• Road/tyre contact noise

• Engine noise

Due to the subsequent progress performed in the field of

noise reduction focusing on these three above classes, a fourth

category began to appear. This fourth class, commonly named

”squeak and rattle” noise is gaining increasing importance in

today’s automotive market because of its irritating aspect and

because it leads to a degradation of the overall build qual-

ity and durability perceived by the final user. Rattle noises

[1, 2], caused by loose elements potentially impacting oth-

ers, are generally modelled as normal contacts. Moreover,

squeak noises caused by elements in friction are modelled as

tangential contact[7]. Both of these two noises mostly appear

under dynamic solicitation (e.g. forced road surface excita-

tion) and are characterized by their random behaviour. They

are caused by unwilling contact or free play that are inherent

to complex assembly. This paper is specifically focusing on

rattle noise.

Such phenomena are based on vibro-impact dynamics which

were involved in many practical examples, such as heat ex-

changer in nuclear reactors [5], gear-pair systems with back-

lash [3] or a ship impacting a harbour wall [4]. Although

impacting system is very common, the study of even one de-

gree of freedom system is still wide spread, mainly due to

the variety and the complexity of the dynamical behaviour of

such systems. Impact oscillators include periodic and chaotic

motions depending on initial conditions and system parame-

ters. For example, Shaw and Holmes [6] examined a single-

degree-of-freedom system comprising a concentrated mass

that can impact a spring and that is otherwise free between

collisions. This piecewise linear system response exhibited

both periodic and chaotic response regimes.

This paper firstly describe an experimental approach which

reproduces rattle found in automotive assembly, then a first

model is introduced to validate experimental measurement.

Experimental and numerical results are finally compared and

discussed.

2 Experimental approach

2.1 Experimental set-up
The first objective of the experimental set-up proposed

here is to reproduce as close as possible rattle noises encoun-

tered in automotive cabin. To do so, and as shown in figure

1, a beam is clamped on its two sides on a rigid support. The

rigid support is submitted to an excitation through its base.

Measurement of the beam velocity is performed using a

laser vibrometer. Vibrations of both rigid support and beam

are measured using accelerometers. When submitted to a

base excitation, the beam impacts a tip which is mounted

with a piezo-electrical force sensor allowing a direct mea-

surement of the impact force. An adjustment of the initial

Figure 1: Experimental set-up

clearance (or pre-load) between the tip and the beam is done

before performing the measurements. Overall behaviour of

the experimental apparatus is observed using a bifurcation di-

agram. A bifurcation diagram is obtained by plotting a state

parameter of the system according to an associated control

parameter. One benefit of this method is to gather the whole

dynamical behaviours exhibited by the set-up. In order to

obtain this diagram, the acquisition chain is automated, the

frequency of excitation ω is varied step by step and velocity

before each impact is taken as a state parameter.

2.2 Measurement results
The bifurcation diagram shown in figure 2 is obtained

by varying the frequency of excitation from f = 20Hz to

f = 35Hz with a step of 0, 1Hz. The first resonance fre-

quency of the beam is measured at f0 = 31.2Hz. Due to the

brief aspect of the phenomena observed, the sampling fre-

quency is set at 102, 4kHz. An initial clearance between the

tip and the beam is adjusted at 0.2mm and the velocity of

each impact is measured.

This diagram can be firstly separated following two prin-

cipal areas : a silent area with no rattle and a second area

containing all rattle occurrences.

2.2.1 Chaotic motion

Several chaotic motions are shown on the bifurcation di-

agram. These are underlined using the dashed rectangle (1),
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Figure 2: Experimental bifurcation diagram with presence

of initial clearance

(3), (5). The impacts are randomly time spaced and of dif-

ferent force amplitude. A time domain acquisition is given

in figure 3 and corresponds to the first area quoted (1) where

erratic behaviour occurs.
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Figure 3: Apparent chaotic behaviour: (a) impact amplitude;

(b) rigid support acceleration

2.2.2 Periodic motion

In order to describe qualitatively the periodic orbits which

are to be discussed, a notation is here introduced [8]. The

periodic scheme of an impact oscillator must repeat after m
impacts, where m is an integer greater or equal to 1. Fur-

thermore, this periodic scheme is necessarily linked to the

forcing function and will have a period quoted nT , where

T = 2π/ω is the period of the forcing and n is another in-

teger greater or equal to 1. The following periodic motion

discussed below will be described using this pair of integers

as (m, n) orbit.

On the given bifurcation diagram, three different periodic

orbits are exhibited by the system. The first periodic orbit

appears for a pulsation 0.87 < ω/ω0 < 0.9 and is quoted on

figure 2 as (2). Time domain shown in figure 4 allows a def-

inition of the considered orbit: one impact occurs for three

periods of forcing, causing this one to be defined as a (1, 3)

orbit.
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Figure 4: First periodic orbit (1,3): (a) impact amplitude; (b)

rigid support acceleration
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Figure 5: Second periodic orbit (6,8): (a) impact amplitude;

(b) rigid support acceleration

Then, for a pulsation 0.92 < ω/ω0 < 0.95, another pe-

riodic sequence occurred (quoted (4) on the bifurcation dia-

gram). As seen on the bifurcation diagram, the system branches

out within two distinct branches : one with high velocity

impact and one with low velocity impact. Corresponding
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Figure 6: Third periodic orbit (1,1): (a) impact amplitude;

(b) rigid support acceleration

time domain acquisition is shown in figure 5 and allows a

more precise description of these two branches. The peri-

odic scheme is actually composed of five different impacts

: two of low amplitude force (between 2.5N and 5N), and

four of higher amplitude force (between 30N and 35N). In

fact, the bifurcation diagram should have shown six differ-

ent branches instead of only two. This difference is mainly

due to the fact that the difference of amplitude of the con-

sidered impact is very low, so that the branches are too close

to each others to be seen. This orbit is a (6, 8) one, because

six different impacts occur during eight periods of excitation

pulsation.

The last one, quoted as (6) on figure 2, is a (1, 1) orbit.

The periodical scheme occurs at each period of the forcing as

seen on figure 6 and is around the first resonance frequency

of the system.

3 Numerical simulation

3.1 Model
In order to reproduce rattle phenomena, we study a sim-

plified model of the experimental apparatus using a one de-

gree of freedom oscillator. This oscillator of mass m shown

in figure 7 is composed of a linear spring of stiffness k and is

associated to a viscous damping c. The basis of this oscilla-

tor is submitted to periodic forcing y(t) = Acos(ωt), with A
the displacement amplitude of the base.

The origin x = 0 is the equilibrium position of the os-

cillator and a rigid barrier is placed according to an initial

clearance σ or pre-load. The presence of the rigid obstacle

that will be impacted by the oscillator during its motion al-

lows this kind of system to be named vibro-impact oscillator.

The process of impact is here modelled using an instan-

taneous rule based on a restitution coefficient [10, 9]. When

the vibro-impact oscillator has an initial presence of clear-

ance, the system is governed by:

mẍ(t) + c
[
ẋ(t) − ẏ(t)

]
+ k
[
x(t) − y(t)

]
= 0, (1)

when x(t) < σ and with:

ẋ(t+) = −rẋ(t−) (2)

when x(t) = σ. Where ẋ(t+) and ẋ(t−) are the impact veloc-

ities respectively just after and before impact occurs.

Because practical measurement of the initial clearance

on the experimental apparatus is assumed to be submitted

to an important uncertainty, the initial clearance is adjusted

using displacement transmissibility. On the experimental bi-

furcation diagram given in figure 2, the rattles almost be-

gin at ω/ω0 = 0, 84. In order to have the same behaviour

in the simulation, the clearance is defined and adjusted at

σ = 0.044mm.

The modal parameters m, c and k, corresponding to the

first mode were experimentally measured and then used in

the numerical model. The parameters of this oscillator are

k = 1773, 4N.m; c = 0.46N/m/s; m = 0.041kg.

The calculations are then performed using a Runge-Kutta

integration scheme of the fourth order [11].

Figure 7: One degree of freedom impact oscillator

3.2 Simulation results
The simulated bifurcation diagram with its associated dif-

ferent motion zones is shown in figure 8. The state parameter

which is observed is the beam velocity just before the impact

and the pulsation of forcing is varied.

As in the experimental diagram, two principal areas are

here separated: a silent zone from ω/ω0 = 0.65 to ω/ω0 =

0.84, and a zone containing all the rattle occurrences from

ω/ω0 = 0.84 to ω/ω0 = 1.05.

Regarding the rattling area, the system also exhibits a

number of different behaviours, mainly chaotic and periodic

motions, which are to be discussed below.

3.3 Discussion
Several different frequency ranges of chaos are shown on

the bifurcation diagram. The main ones are quoted (1) and

(3) on figure 8. The first one occurs at around ω/ω0 = 0.85.
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Figure 8: Numerical bifurcation diagram with a clearance of

0.045mm

The oscillator impact its rigid barrier with random impact ve-

locity.

In frequency Range (2), a periodic branch is observed.

This periodic orbit corresponds to forcing adimensionnal cir-

cular frequency 0.85 < ω/ω0 < 0.88. One contact occurs

periodically for three period of forcing leading to a (1, 3) or-

bit.

The area quoted as (3) on the bifurcation diagram is then

more unclear. This zone contains only chaotic motion, and

hence cannot be completely superposed to the corresponding

experimental zones (quoted as (3) and (4) on figure 2).

This area is then followed by a brief new periodical orbit

(quoted (4)) which is also found out on the experimental di-

agram (zone (5)). This brief periodical orbit then stabilizes

to a new periodic regime around the resonance of the system.

This orbit is a (1, 1) one and corresponds to the experimental

behaviour.

The whole experimental bifurcation diagram can be qual-

itatively simulated using a single degree of freedom vibro-

impact oscillator. Although some differences are visible, the

main zones are reproduced and the qualitative form of the

periodic orbits (m, n) is well described by the simulation.

4 Conclusion
Rattle noises are frequently observed in automotive con-

text. An academic experiment consisting in a beam impact-

ing a rigid barrier has been experimentally studied in order

to reproduce such noises. Measurements of impact force and

beam velocity allow us to determine bifurcation diagrams

which permits to define different frequency bands associated

to silence or rattle noise, which can be periodic or random.

A numerical model is proposed using a single-degree-of-

freedom vibro-impact oscillator which qualitatively repro-

duces the experiments: the existence of frequency bands as-

sociated to a given behaviour are predicted.
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