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The sound power of a monopole source in free space is well known, and it is also known that the radiating sound 
power is not only determined by the source itself, but also the immediate environment surrounding the source. In 
this paper, a hybrid finite element method is used to study the sound power radiating from a monopole source 
placed close to a pipe discontinuity.  It is found that while the sound power of a monopole source in free space 
increases as frequency squared, the sound power radiated from the same source in a cylindrical pipe is constant 
in the plane wave region. A sharp increase in sound power is then seen to occur when the first high-order mode 
cuts on; sound power is then seen to decrease as a function of frequency until the second high-order mode cuts 
on, and so on. It is also found that a wave reflected by a discontinuity placed close to one side of the source will 
interact with a wave on the other side travelling away from the source.  This alters the sound power radiating 
from the source and has ramifications for the placement of monopole sources in piping systems. 

1 Introduction 

It is well known that sounding board can increase sound 
power output in musical instruments. Similar behaviour 
exists in a pipeline system, and is not well studied in the 
literature. The amount of sound power that travels into each 
branch is related to the relevant position of the sound 
source inside the system and has to be studied to achieve 
maximum sound power output. The reflections from the 
surrounding structure have a very complex interference 
with the acoustic source and will influence the total amount 
of sound power that is emitted by the sound source.  This 
article investigates the effect of a blockage on the wave 
propagation in a pipe system which contains a monopole 
source. A hybrid finite element (FE) method is adopted 
here to model the problem by linking the different regions 
inside the pipe. 

It is sometimes believed that the radiated sound power 
of a sound source is determined by the sound source only, 
and has nothing to do with its surroundings. It is not so for 
steady state sound field. A simple example is the output 
sound power of the monopole source near a rigid reflecting 
surface, which is doubled compared to the same source in 
the free space [1]. Reflections from the surrounds falling on 
a source, which are coherent with (phase related to) the 
source action, affect the sound power generated by that 
action [2]. The effect of the pipe wall and its non-uniform 
sections or terminations on the sound power output of a 
monopole source is not well studied in literature, due to the 
complex coherence pattern between the acoustic pressure 
and velocity. The wave propagation in a uniform duct 
containing a non-uniform section is studied by Astley [3]. 
Analytic modal expansions in the uniform section are 
coupled to the FE solutions in the non-uniform section of 
the pipe. Kirby [4] developed this hybrid FE method by 
allowing the modal solutions in the uniform section of the 
pipe to be obtained numerically. Thus, the model can be 
applied to a pipe with an arbitrary cross-section and 
contains one or more arbitrary non-uniform sections. Both 
mode matching [3, 4] and point collocation [5] can be used 
to enforce the continuity equations over different sections. 
However, in Astley’s model, the source region is excluded 
and the acoustic pressure or its normal derivative has to be 
specified on a surface that surrounds the radiation region. In 
Kirby [4] and Kirby and Lawrie’s articles [5], the source is 
represented by a sum of modes with known amplitudes. For 
a general sound field, for instance, the aeroacoustic sources 
associated with the fan of a gas turbine, the sources may by 
simulated by a distribution of elemental acoustic sources 
over a cross-section of the duct. Kim and Nelson [6] use the 
method of Green’s function to model the modal amplitudes 
of a set of monopole sources in a cylindrical duct. The 
Green’s function is expressed as a sum of modes in the 
duct, but the modal amplitudes cannot be solved directly 

and are related to the reflection coefficients of the reflected 
and incident waves.  The reflection coefficients can only be 
solved separately by assuming that the upstream section is 
uncoupled to the source and the downstream section is 
anechoic. In this paper, we shall see that if the downstream 
section is not anechoic, then the upstream section is 
coupled to the source, since reflections from downstream 
section would affect the sound power radiated into the 
upstream section.  

In this article, a hybrid FE method is used to join a 
region that encloses the source and a uniform regular region 
such as a pipe [3, 4]. The advantage of this method is that 
the inhomogeneous wave equation can be solved 
numerically, and fully coupled to the surrounding 
structures. The hybrid method avoids the need to mesh the 
uniform region, and thus greatly saves the computation 
memory, and speeds up the computation time. We study the 
sound power of a monopole source in an infinitely long 
cylindrical duct. Unlike the monopole source in free space, 
where the sound power increase as frequency squared, the 
sound power of the same source in a duct is constant in the 
plane wave region, until the high order mode cuts on.  

A hybrid FE method which joins different regions, ie., a 
region that contains the source and a discontinuity region in 
the duct, is presented in Section 2.  Finite element method 
is used to discretise the region that contains the source and 
the discontinuity region, while modal expansions are used 
for the uniform duct. The sound power radiated into 
different branches of the pipe is then studied in Section 3, 
and the conditions that can change the sound power output 
of the source are then analysed.  

2 Theory 
The monopole source is considered as an oscillating 

sphere of radius ߳. The source strength of a monopole is 
defined as its surface area multiplied by its surface velocity 
[1]: 

ࡽ  = ଶ߳ߨ4 ఢܷ݁௜ఠ௧ = ܳ௦݁௜ఠ௧ . (1) 

where ఢܷ is the normal velocity amplitude on the 
surface of the oscillating sphere,	݅ = √−1,  ߱ is the radian 
frequency.  

Relating the acoustic velocity to the source of mass, and 
taking the limit of small ߳, the three-dimensional wave 
equation with a point source is given as: 
  

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

694



ଵ௖మ ௗమ௣′ௗ௧మ − ∇ଶ݌′ ݔ)ߜ଴ܳ௦݁௜ఠ௧ߩ߱݅  = − ݕ)ߜ(௦ݔ − ݖ)ߜ(௦ݕ −  ௦)  (2)ݖ

where the delta (Dirac) function is defined as: ݔ)ߜ − ݕ)ߜ(௦ݔ − ݖ)ߜ(௦ݕ − (௦ݖ = 0  for	ݔ ≠ ,௦ݔ ݕ ≠ ݖ	and	௦ݕ ≠  ௦ (3)ݖ

and provided that Ω includes the source. ׬ ݔ)ߜ − ݕ)ߜ(௦ݔ − ݖ)ߜ(௦ݕ − ௦)ஐݖ ݀Ω = 1. 

The geometry of a monopole source in a pipe which 
also encloses a blockage is shown in Figure 1. 

 
 
 
 
 
 
 
 
 
 
 

Figure 1. Monopole source in a pipe which encloses a 
blockage. 

In region R2, the governing equation is given as 

 −݇ଶ݌ଶ − ∇ଶ݌ଶ =  ଶ (4)ܨ

For region R2 the acoustic pressure is approximated by 

,ݔ)ଶ݌  ,ݕ (ݖ = ∑ ଶܰೕ௡మ௝ୀଵ ,ݔ) ,ݕ ଶೕ݌(ݖ =  ૛. (5)ܘ૛ۼ

where ଶܰೕ is a global trial (or shape) function for the 
finite element mesh in region ܴଶ, ݌ଶೕ is the value of the 
sound pressure at node ݆, ݊ଶ is the number of nodes in 
region ܴଶ; and ۼ૛ and ܘ૛ are row and column vectors 
respectively.  After applying Galerkin’s method and 
Green’s theorem, the governing equation in region ܴଶ is 
written as ׬ ૛ࡺ∇ࢀ૛ࡺ∇ൣ − ݇ଶࡺ૛ࡺࢀ૛൧Ωమ ݀Ωଶ࢖૛  = ׬ Γమࢀ૛ࡺ ଶ݌∇ ∙ ݊ଶ݀Γଶ + ׬ ଶΩమܨࢀ૛ࡺ ݀Ωଶ (6) 

where ׬ Γమࢀ૛ࡺ ଶ݌∇ ∙ ݊ଶ݀Γଶ = ׬ Γఽࢀ૛ࡺ ଶ݌∇ ∙ ݊஺݀Γ୅ ׬  + Γాࢀ૛ࡺ ଶ݌∇ ∙ ݊஻݀Γ୆ + ׬ Γమ౛ࢀ૛ࡺ ଶ݌∇ ∙ ݊ଶ௘݀Γଶୣ   (7) 

For regions ܴଵ and ܴଷ, the sound pressure field is given 
as: 

,ଵݔ)ଵ݌  ,ݕ (ݖ = ∑ ௡௠భ௡ୀ଴ܣ Ф௡݁௜௞α౤௫భ  (8) 

,ଶݔ)ଷ݌ ,ݕ (ݖ = ∑ ௡Ф௡௠య௡ୀ଴ܤ ݁ି௜௞α౤௫మ + ∑ ௡௠య௡ୀ଴ܥ Ф௡݁௜௞α౤௫మ   
(9) 

Continuity of pressure and velocity over ΓA yields: 

ଶ஺݌  = ∑ ௡Ф௡௠భ௡ୀ଴ܣ  (10) 

 డ௣మಲడ௫ = ݅݇ ∑ ௡α୬Ф௡௠భ௡ୀ଴ܣ  (11) 

Continuity of pressure and velocity over ΓB yields: 

ଶ஻݌  = ∑ ௡Ф௡௠య௡ୀ଴ܤ + ∑ ௡௠య௡ୀ଴ܥ Ф௡ (12) 

 డ௣మಳడ௫ = −݅݇൛∑ ௡α୬Ф௡௠య௡ୀ଴ܤ − ∑ ௡௠య௡ୀ଴ܥ α୬Ф௡ൟ (13) 

Substituting Eqs. (11) and (13)  into Eq. (7) yields, ׬ Γమࢀ૛ࡺ ଶ݌∇ ∙ ݊ଶ݀Γଶ = −݅݇ ׬ Γఽࢀ૛ࡺ ∑ ௡α୬Ф௡௠భ௡ୀ଴ܣ ݀Γ୅  −݅݇ ׬ Γాࢀ૛ࡺ ൣ∑ ௡α୬Ф௡௠య௡ୀ଴ܤ − ∑ ௡௠య௡ୀ଴ܥ α୬Ф௡൧݀Γ୆ (14) 

The mode matching method is used to weight the 
pressure continuity Eqs. (10) and (12). Thus, Eqs. (10) and 
(12) yields, 

݅݇α୫න Ф௠ࡺ૛݀Γ୅୻ఽ  ࡭૛࢖

 = ݅݇α୫ ∑ ௡௠భ௡ୀ଴ܣ ׬ Ф௠Ф௡݀Γ୅୻ఽ  (15) 

݇α୫ ׬ Ф௠ ଶܰ݀Γ୆୻ా ଶ஻݌ = 	݅݇α୫ ∑ ௡௠య௡ୀ଴ܤ ׬ Ф௠Ф௡݀Γ୆୻ా +	  
 ݅݇α୫ ∑ ௡௠య௡ୀ଴ܥ ׬ Ф௠Ф௡݀Γ୆୻ా  (16) 

where ܘ૛ۯ and ܘ૛۰ denotes values of the finite element 
solution in region ܴଶ at the nodal locations on the surface 
Γ୅ and Γ୆ respectively. 

For regions ܴସ and ܴହ, the sound pressure field is given 
as: 

,ଷݔ)ସ݌  ,ݕ (ݖ = ∑ ௡௠ర௡ୀ଴ܦ Ψ୬݁ି௜௞ఉ೙௫య + ∑ ௡௠ర௡ୀ଴ܧ Ψ୬݁௜௞ఉ೙௫య  

(17) 

,ସݔ)ହ݌  ,ݕ (ݖ = ∑ ௡Ф௡௠ఱ௡ୀ଴ܨ ݁ି௜௞஑౤௫ర  (18) 

Mode matching technique is used to enforce continuity 
of pressure and velocity over ΓC, which yields: 

௠ߚ݇݅  ∑ ௡ܤ ׬ Ψ୫Ф௡݀Γ஼ᇱ୻಴ᇲ௠య௡ୀ଴ ݁ି௜௞஑౤௅మ  

௠ߚ݇݅+ ∑ ௡௠య௡ୀ଴ܥ ׬ Ψ୫Ф௡݀Γ஼ᇱ୻಴ᇲ ݁௜௞஑౤௅మ   

௠ߚ݇݅− ∑ ௡ܦ ׬ Ψ୫Ψ୬݀Γ஼ᇱ୻಴ᇲ௠ర௡ୀ଴   

௠ߚ݇݅−  ∑ ௡௠ర௡ୀ଴ܧ ׬ Ψ୫Ψ୬݀Γ஼ᇱ୻಴ᇲ = 0 (19) 

 

ΓA ΓB ΓC ΓD 

R1 
R2 

R3 R4 R5 

Monopole 
source Blockage 

L1 L3 L2 
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−∑ ௡௠య௡ୀ଴ܤ ݅݇α୬ ׬ Ф௠Ф௡݀ΓେΓి ݁ି௜௞α౤௅మ  

+∑ ௡௠య௡ୀ଴ܥ ݅݇α୬ ׬ Ф௠Ф௡݀ΓେΓి ݁௜௞α౤௅మ  

+∑ ௡௠ర௡ୀ଴ܦ ௡ߚ݇݅ ׬ Ф௠Ψ୬݀Γ஼′Γ಴′   

 −∑ ௡௠ర௡ୀ଴ܧ ௡ߚ݇݅ ׬ Ф௠Ψ୬݀Γ஼′Γ಴′ = 0 (20) 

Here, Γ஼′  denotes the annulus region between the 
blockage and the pipe wall which lies on the surface of Γେ.  
Similarly, continuity of pressure and velocity over ΓD 
yields: ݅݇ߚ௠ ∑ ௡௠ర௡ୀ଴ܦ ׬ Ψ୫Ψ୬݀Γ஽′Γವ′ ݁ି௜௞ఉ೙௅య  

௠ߚ݇݅+ ∑ ௡௠ర௡ୀ଴ܧ ׬ Ψ୫Ψ୬݀Γ஽′Γವ′ ݁௜௞ఉ೙௅య   

௠ߚ݇݅  ∑ ௡௠ఱ௡ୀ଴ܨ ׬ Ψ୫Ф௡݀Γ஽′Γವ′ = 0 (21) 

 −∑ ௡௠ర௡ୀ଴ܦ ௡ߚ݇݅ ׬ Ф௠Ψ୬݀	Γ஽ᇱ	୻ವᇲ ݁ି௜௞ఉ೙௅య   

+∑ ௡௠ర௡ୀ଴ܧ ௡ߚ݇݅ ׬ Ф௠Ψ୬݀	Γ஽ᇱ	୻ವᇲ ݁௜௞ఉ೙௅య  

 +∑ ௡௠ఱ௡ୀ଴ܨ ݅݇α୬ ׬ Ф௠Ф௡݀Γୈ୻ీ = 0 (22) 

Eq. (6), Eqs. (15)-(16) and Eqs. (19)-(22) are combined 
to give a final matrix equation as: 

 ൤ ۵۰ ۵۰۱۵۱۰ ۵۱۱൨ ቄ۱ܘ۰ܘቅ = ൜۱܎۰܎ൠ (23) 

Here, 

 [۵۰] = ێێۏ
૚ۻ−ۍێ ૚ۿ ૙ ૙ ૙ۿ૚܂ ۵૛ۯۯ ۵૛܍ۯ ۵૛۰ۯ ૙૙ ۵૛ۯ܍ ۵૛܍܍ ۵૛۰܍ ૙૙ ۵૛۰ۯ ۵૛۰܍ ۵૛۰۰ ૙܂૜ۿ ૙ ૙ ૜ۿ ۑۑے૜ۻ−

ېۑ
 (24) 

 [۵۰۱] = ێێۏ
ۍێ ૙ ૙ ૙ ૙૙ ૙ ૙ ૙૙ ૙ ૙ ૙−ۿ૜۲܂૜ ૙ ૙ ૙−ۻ૜۲૜ ૙ ૙ ૙ۑۑے

 (25) ېۑ

 [۵۱۰] = ൦૙ ૙ ૙ ૙ ૜૝۲૜૙ۻ ૙ ૙ ૙ ۲૜૙܂૜ۻ− ૙ ૙ ૙ ૙૙ ૙ ૙ ૙ ૙ ൪ (26) 

 [۵۱۱] = ێێۏ
૜૝ۻۍ ૝ۻ− ૝۲૝ۻ− ૙ۻ૜܂ ܂૜૝ۻ ܂૜૝ۻ− ۲૝ ૙૙ ૝۲૝ۻ ૝ۻ ૞૝૙ۻ− ܂૞૝ۻ− ۲૝ ܂૞૝ۻ ܂૞ۻ ۑۑے

ې
 (27) 

 

 ሼ۰ܘሽ = ۔ۖەۖ
ۓ ૛۰۰ܘ܍૛ܘۯ૛ܘۯ ۙۖۘ

ۖۗ
 (28) 

 ሼ۱ܘሽ = ൞۱෨۲۳෨۴ൢ (29) 

 ሼ۰܎ሽ = ۔ۖەۖ
૙૙૙ۙۖۘܛ܎૙ۓ

ۖۗ
 (30) 

 ሼ۱܎ሽ = ቐ૙૙૙૙ቑ (31) 

[۲૜]	and	[۲૝]are diagonal matrices with each diagonal 
element given by ݁ି௜௞஑೙௅మ , (݊ = 0,1,⋯ ,݉ଷ) and ݁ି௜௞ఉ೙௅య, 
(݊ = 0,1,⋯ ,݉ସ),respectively. [۲૜]ି૚ሼ۱ሽ = ൛۱෨ൟ, and [۲૝]ି૚ሼ۳ሽ = ሼ۳෨ሽ.  In addition, 

 ሼܛ܎ሽ = ∑ ௦௝௡ೞ௝ୀଵߝ ,௦௝ݔ൫܂૛ۼ଴ܳ௦௝ߩ߱ ,௦௝ݕ  ௦௝൯ (32)ݖ

 [۵૛] = ׬ ૛ࡺ∇ࢀ૛ࡺ∇ൣ − ݇ଶࡺ૛ࡺࢀ૛൧Ωమ ݀Ωଶ (33) 

[૚ۿ]  = ݅݇α୫ ׬ Ф௠ࡺ૛݀Γ୅Γఽ 					(݉ = 0,1,⋯ ,݉ଵ) (34) 

[૜ۿ]  = ݅݇α୫ ׬ Ф௠ࡺ૛݀Γ୆Γా 					(݉ = 0,1,⋯ ,݉ଷ) (35) 

[૚ۻ] = ݅݇α୫ ׬ Ф௠Ф௡݀Γ୅Γఽ 				  
 (݉ = 0,1,⋯ ,݉ଵ; ݊ = 0,1,⋯ ,݉ଵ) (36) 

[૜ۻ] = ݅݇α୫ ׬ Ф௠Ф௡݀Γ୆Γా 							  
 (݉ = 0,1,⋯ ,݉ଷ; ݊ = 0,1,⋯ ,݉ଷ) (37) 

[ଷସܯ] = ௠ߚ݇݅ ׬ Ψ௠Ф௡݀Γେ′୻ి′ 							  
 (݉ = 0,1,⋯ ,݉ସ; ݊ = 0,1,⋯ ,݉ଷ) (38) 

[ସܯ] = ௠ߚ݇݅ ׬ Ψ௠Ψ௡݀Γେ′୻ి′ 						  
 	(݉ = 0,1,⋯ ,݉ସ; ݊ = 0,1,⋯ ,݉ସ) (39) 

[ହସܯ] = ௠ߚ݇݅ ׬ Ψ௠Ф௡݀Γୈ′୻ీ′ 						  
 	(݉ = 0,1,⋯ ,݉ସ; ݊ = 0,1,⋯ ,݉ହ) (40) 

[ହܯ] = ݅݇α୫ ׬ Ф௠Ф௡݀Γୈ୻ీ 							  
 	(݉ = 0,1,⋯ ,݉ହ; ݊ = 0,1,⋯ ,݉ହ) (41) 

Matrix [۵૛] is decomposed into separate elements to 
give 
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 [۵૛]ܘ૛ = ൥۵૛ۯۯ ۵૛܍ۯ ۵૛۰۵ۯ૛ۯ܍ ۵૛܍܍ ۵૛۰۵܍૛۰ۯ ۵૛۰܍ ۵૛۰۰൩ ൝ܘ૛ܘۯ૛ܘ܍૛۰ൡ (42) 

In the above equations, matrix [۵۰] has the order (݊ଶ + ݉ଵ +݉ଷ) × (݊ଶ + ݉ଵ + ݉ଷ). matrix [۵۰۱] has the 
order (݊ଶ + ݉ଵ + ݉ଷ) × (݉ଷ + 2݉ସ + ݉ହ). Matrix [۵۱۰] 
has the order (݉ଷ + 2݉ସ + ݉ହ) × (݊ଶ + ݉ଵ +݉ଷ). matrix [۵۱۱] has the order (݉ଷ + 2݉ସ + ݉ହ) × (݉ଷ + 2݉ସ +݉ହ).  ሼ۰ܘሽ and ሼ۰܎ሽ are the vectors of order (݊ଶ + ݉ଵ +݉ଷ). ሼ۱ܘሽ and ሼ۱܎ሽ are the vectors of order (݉ଷ + 2݉ସ +݉ହ). 
3 Results and discussion 

The results obtained from the numerical models 
described in the previous section are presented in the form 
of sound power.  In the calculations that follow, the fluid in 
all regions is assumed to be air, in which the speed of sound ܿ = 343.2244	m/s. 

 

Figure 2. Sound power radiated by a monopole source.  
         source in the pipe;           : source in the free space. 

Fig. 2 shows the comparison of the calculated sound 
power between a monopole source in a cylindrical pipe and 
the same source in the free space. The radius of the pipe is 
a=75 mm. The radius of the blockage is zero in this case, 
which means that no blockage is present. Note that the 
sound power in the pipe in Fig. 2 is the total sound power 
radiated into regions ܴଵ and ܴଷ. Since the pipe is symmetric 
about the source plane, the source radiates equally into 
regions ܴଵ and ܴଷ. The monopole source is placed on the 
central axis of the pipe, so the circumferential high-order 
modes won’t be excited. The first radial high-order mode 
will cut on at 2791Hz. It can be seen from Fig. 2 that the 
sound power in the pipe is largely mode dependent, and in 
the plane wave region the sound power is a constant. In the 
free space, the total sound power increases as frequency 
squared. So in the low frequency region, the monopole 
source radiates more power in the pipe than in the free 
space, but in the high frequency range, the situation can be 
inversed. At cut-on frequency, the first radial mode radiates 
infinity sound power into the pipe if assuming no damping 
is present. Above the cut-on frequency, the plane wave still 
radiates the same amount of sound power as in the plane 
wave region, although the first radial high-order mode will 
be a more efficient sound power radiator than the plane 
wave mode. Unlike the monopole source in the free space, 

the sound power will decrease with frequency increases, 
until the second high-order mode cuts on, and then the 
similar behaviour will continue. A number of numerical 
experiments using different pipe radius reveal that the total 
sound power of a monopole source in a cylindrical pipe in 
the plane wave region is related to the area of the pipe only, 
and is given as,  

௧௥ߎ  = ொೞమఘబ௖ସగ௔మ , (43) 

where Eq. (43) is valid irrespective of the position of the 
source in the pipe.  Of course, this result is well known [7] 
and serves to validate the predictions generated here.  The 
real power of the model presented here is in the study of 
high-order circumferential or radial mode cuts on, where 
the position of the source will matter. 

 

Figure. 3. Sound power in pipe with blockage.  
           , sound power in ܴଵ; ,              sound power in ܴଷ;  

           sound power in ܴହ. 

Fig. 3 shows the sound power radiated into different 
branches of a pipe which contains a blockage. A monopole 
source is placed on the central axis of the pipe. The 
blockage is 300mm long, 55mm in radius, and 5m away 
from the source. The sound power radiated into region ܴଷ is 
a constant, and is half the value given in Eq. (43). Then part 
of this power will be reflected back into the left hand side 
of the pipe, and part of this power will be transmitted into 
region ܴହ. So the radiated power in region ܴହ is always less 
than or at most equal to the power radiated into region ܴଷ. 
The specific reflection and transmission power ratio is 
related to the geometric shape of the blockage, and will not 
be detailed here. It is interesting to note that the sound 
power radiated into region ܴଵ exhibits an oscillatory 
behaviour. This is because that the initial wave omitted by 
the source into the left hand side of the pipe interacts with 
the reflected wave from the blockage, and forms an 
interference pattern in region ܴଵ. The total sound power in 
region ܴଵ is thus determined not only by the phase 
difference between the initial wave from the source and the 
reflected wave from the blockage, but also by the 
magnitude of the reflected wave. It is clear that when the 
power radiated into region ܴହ is low. Then the reflected 
power from the blockage will be high, and the maximum 
power radiated into region ܴଵ will be high as well. The 
period of the oscillation pattern of the power radiated into 
region ܴଵ is related to the distance between the source and 
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the blockage. Suppose this distance is D, then at a 
frequency ଵ݂, the number of wavelengths that the wave 
travels from the source to the blockage, and is then 
reflected back to the source is given as: 2D/ߣଵ = ܦ2 ଵ݂/ܿ, 
where ߣଵ is the wavelength. At a different frequency ଶ݂, the 
number of wavelengths will be 2ܦ ଶ݂/ܿ. If 2ܦ ଶ݂/ܿ ܦ2− ଵ݂/ܿ = 1, which indicates that the wave has travelled 
one more wavelength, and the phase difference between the 
initial wave from the source and the reflected wave from 
the blockage at these two frequencies will be the same. It is 
thus deduced that the period of the oscillation of the sound 
power travelled into region ܴଵ is ∆݂ =   .ܦ2/ܿ

4 Conclusion 

A hybrid numerical method is used to study the sound 
power output of a monopole source in a cylindrical pipe. 
The hybrid method allows the inhomogeneous wave 
equation to be solved directly, and coupled to the other 
homogenous wave fields. The hybrid method meshes only 
the discontinuity region in the duct and the region that 
surrounds the source, thus greatly saves computation 
memory and speeds up the computation time. If a blockage 
is placed in the downstream of the duct, then the reflected 
wave from the blockage will interact with the initial wave 
from the source that radiates into the upstream of the duct. 
The result is that the downstream power is determined by 
the source only, while the upstream power is determined by 
coupling between the source and the reflected wave from 
the blockage. The oscillation power in the upstream region 
is found to be also related to the distance between the 
source and the blockage. 

Acknowledgments 

The authors would like to thank the UK Engineering 
and Physical Sciences Research Council (EPSRC) for their 
support of the work reported in this article. 

References  

[1] M.P. Norton, Fundamentals of noise and vibration 
analysis for engineers. Cambridge: Cambridge 
University Press. 1989. 

[2] F.J. Fahy, Sound intensity. 2nd ed.: E & FN Spon. 
1995. 

[3] R.J. Astley, Fe mode-matching schemes for the 
exterior helmholtz problem and their relationship to the 
fe-dtn approach. Comm. Num. Meth. Eng., 1996. 12(4): 
p. 257-267. 

[4] R. Kirby, Modeling sound propagation in acoustic 
waveguides using a hybrid numerical method. J. 
Acoust. Soc. Am., 2008. 124(4): p. 1930-1940. 

[5] R. Kirby, and J.B. Lawrie, A point collocation 
approach to modelling large dissipative silencers. J. 
Sound Vib., 2005. 286(1-2): p. 313-339. 

[6] Y. Kim, and P.A. Nelson, Estimation of acoustic 
source strength within a cylindrical duct by inverse 
methods. J. Sound Vib., 2004. 275(1-2, ): p. 391-413. 

[7] A. Pierce, Acoustics, an introduction to its physical 
principles and applications. Mc Graw Hill, New York, 
1981. 

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

698


