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Numerical simulation methods are very useful in Non Destructive Testing because they save time, lower cost and 
allow for the investigation of diverse experimental configurations. However, these methods consume relatively long 
CPU time and system memory. Different solutions exist to minimize these limitations. Absorbing region methods 
are among them when it’s possible. These kinds of regions are also made to minimize or eliminate the spurious 
reflections at the boundaries of the simulated structure for more efficient signal processing. There are different ways 
to design appropriate absorbing regions. 
Different approaches will be investigated and compared to show the advantage and limits of each one. Some 
examples will be presented. 

  

1 Introduction 
Nowadays, numerical modeling is widely adapted in 

ultrasonic guided wave NDT to help improve in-situ 
experimental results, contribute in reducing false alarms, 
and consequently making better decisions. Different 
numerical methods have already been developed and can be 
used. Finite Element (FE) modeling is among them, and it 
is now available in many commercial FE packages. This 
numerical method permits to: 

� understand the wave’s behavior even in 
complex waveguides,  

� simulate the interaction between waves and 
realistic defects (with arbitrary fashions and 
sizes).  

� simulate the generation of a pure mode and 
supply accurate data [1], 

� … 

However, this method needs a relatively large amount 
of memory and a powerful processor, and the CPU time is 
therefore long. Some solutions exist to reduce the CPU 
time. When possible, Absorbing region (AR) can be used.

From another side, FE numerical simulation can be 
executed in time domain as well as in frequency domain. 
And the AR application is nearly required for frequency 
domain simulations. Different from simulations in time 
domain, frequency domain simulations give results of 
stationary distribution of the acoustic field. For this reason, 
it is impossible to have snapshots of the acoustic field at 
different time points during the propagation process, 
especially before the reflections from boundaries occur. 
The total field hence appears as a summation of the incident 
wave and multiple reflections from all the boundaries 
before the full attenuation of the waves. This makes the 
simulation results complicated for analysis to the point of 
being nonsense. Besides, for better comparisons with 
experimental results, which separate the incident waves 
from reflections by different propagating times, it is 
necessary to remove all the reflections by plate boundaries. 
The most convenient solution is to add AR all around the 
edges of the plate to suppress any unwanted reflection. This 
aids in providing meaningful results in the frequency 
domain, avoiding the time-consuming drawback of 
calculation in the time domain, mainly by taking 
advantages of the material damping.  

These methods are employed in many other fields such 
as seismology, telecommunication, etc [2-4] since it is 
related to the wave propagation cases. There are different 
ways to design appropriate absorbing regions. Essentially, 
there are typically two kinds of AR, one is called Perfectly 
Matched Layer (PML) [5-7], and the other is Viscoelastic 
Absorbing Region (VAR) [8, 9].  

In this paper, different approaches to design the AR will 
be investigated and compared to show the advantages and 
limitations of each one. Basing on the PML conception, a 
novel VAR model will be proposed. To show the efficiency 
of this approach, a 3D numerical example will be presented. 

2 Viscoelastic absorbing region : 
some approaches 
The use of absorbing region is not really recent. Lysmer 
and Kuhlemeyer [9], who are probably the first researchers 
who worked on this topic, published a paper in 1969 in 
which they propose an artificial boundary for the purpose of 
wave propagation in an infinite domain. They suggested 
minimize the reflected wave energy by introducing 
damping at the plane of the finite boundary and choosing 
appropriate damping constants.  

The visco-elasticity of materials is usually described by 
complex stiffness moduli, where the real and imaginary 
parts are related to the elastic and damping properties, 
respectively. The imaginary parts, which will subsequently 
appear in the damping term of displacement solutions, seem 
to be directly linked to attenuations of the wave amplitudes, 
so VAR is set by continuously increasing the imaginary 
parts of the complex moduli, in order to increasingly absorb 
the waves without causing reflections because of big 
changes in material properties. 

The criteria for achieving the required VAR are: 
� sufficient damping such that the effect of the 

boundary is negligible, 
� damping is gradual enough so that there is no 

reflection caused by a sudden change in condition, 
� cross-section is equal to that of the propagation 

domain (PD), 
� the AR length is as short as possible, to reduce the 

CPU time, 
� acoustic impedance is quazi-equal to that of the 

PD near the interface separating the AR and the 
PD, 

� AR length is proportional to the wave’s amplitude. 

To satisfy these criteria, different approaches have been 
developed. For brevity, we give three AR models designed 
in the last ten years. Liu and Quek Jerry [10] use a 
gradually damped artificial boundary composed of 10 
viscoelastic layers. The density of the PD is kept the same 
for all the 10 regions. However, Young’s modulus E was 
modified to viscoelastic one Ek containing an imaginary 
part, as following: �� � � � ����, 	 � 
1, 2, …,10}     (1) 
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where 	 refers to kth region. This equation was inserted in a 
equation of motion which was solved by the usual Gaussian 
elimination method. 

Castaings et al [1] improved this model by adding only one 
region to the PD instead of ten. Moreover, since the 
equation of motion is not always easily accessible in 
commercialized software, the imaginary parts of the 
viscoelastic material moduli, which are required in model 
setting, were defined by the following form: 

������������� � ���� �	 ����������     (2) 

where ����  and ����� are the elastic and damping matrix (given 
in Einstein notation) of the PD respectively, i, the complex 
number (i² = -1), f, a function, chosen to increase the 
damping in the AR. This function depends on the variable 
x, which denotes the distance from a point in VAR to the 
interface between VAR and PD (see Fig. 1 with x=x1). This 
figure gives a 2D plate model with the PD and the AR 
having lengths L and L� respectively. The AR is located in 
the area outside the PD which can be defined by:  

� ! �" !  �  �, on	the	right	hand	side	. � 	! �" ! 0, on	the	left		hand	side	 . 

Fig. 1: Settings of 2D VAR

For a purely elastic PD, this formula can be simplified to:  

������������� � ���� 21 � 	�����3,     (3) 

where ����  is evidently real.  

The function � taken in ref. [1] is exponential, and given 
by: ���� � 4�567�/9,  ! � !  �  �,    (4) 

where : is a constant for the optimization use. 

The exponential function (discretized in the 1st approach 
and continuous in the 2nd one) ensures that the rate of 
increase in damping is low in the beginning and becomes 
higher as x increases. An exponential function with a well 
optimized parameter : is a good choice since it prevents a 
sudden change in the damping that will itself cause a 
reflection to the propagating wave. However, since the 	lim5→7������ � 1, some spurious reflection will occur 
when waves cross from the first medium (PD) to the second 
one (AR).  

Hosten et al [5] reformulated this model by using a function 
which is equal to zero at the interface PD / AR and increase 
exponentially. A function proportional to �=, > ∈ @∗ can 
be a solution. In addition, this function must not increase 
very quickly to avoid reflected waves (even if the AR is 
short), nor very slowly because the AR will be 
consequently long. In Fig. 2, we illustrate this idea by 
plotting �=, > � 
1, 2, 3, 5D. From this plot and with these 
two criteria in mind, we can deduce that 	�E is the optimal 
function. 

Fig. 2: Plot of � ∝ �=, > � 
1, 2, 3, 5D in the interval [100, 
120] (top) and a zoom on the first two units (bottom).

The chosen function in ref. [5] is given by:   

���� � : �567�7G
E ,  ! � !  �  �,    (5) 

To attain the aim of attenuating the amplitudes of wave 
reflections to at most 0.1% of that of incident waves, the 
length of the VAR can ultimately be reduced to 3 times the 
maximum wavelength of all propagating modes in the plate 
after optimization. 

Obviously, though the number of mesh elements within 
absorbing regions is reasonably small in 2D models, this is 
likely to be very different in 3D models because absorbing 
regions would then have to be defined as voluminous bands 
or rings surrounding the domain of propagation. For this 
reason, the use of absorbing regions may become a serious 
drawback in 3D simulations, if not properly defined or 
optimized. 

3 Improved Viscoelastic Absorbing 
Region  

As we can see in the previous section, the design of an 
AR is based on the viscoelastic constant. The question 
which can be asked is: why can the density not be included 
in the design of such an AR? This is applied in the 
conception of the perfectly matched layer (PML). To make 
the PML clear, we dedicate the following sub-section for a 
didactic example.  

3.1 Perfectly Matched Layer  
Similar to VAR, PML is also set all around the PD, and 

as indicated by its name, the main principle to set a PML is 
to always match the acoustic impedance in the AR with that 
of the PD with the overall aim of absorbing waves. To 
reveal the nature of the performance of the PML, a simple 
example is cited in ref. [7]. 

For linear acoustics in a one-dimensional case in fluid 
with mean density HI and speed of sound JI, the linear 
wave equation for acoustical pressure p is: 
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"KLM N
MONPM . NMON5M  = 0      (6) 

where x is the position in the direction of propagation.  
For a given medium, the acoustic impedance is given by:  

Q� � HIJI .       (7) 

For the simplest case, when a sound wave is incident 
perpendicularly from medium 1 into medium 2, the 
reflection coefficient R, which is related to the acoustical 
impedances of the adjacent media, is defined as:  

R � SGM6SGTSGMUSGT       (8) 

with Q�" � H"J" et Q�V � HVJV. 

As we can see in the equation, in the case where Za1= Za2, 
R=0, which means non-reflection.

With this in mind, it is possible to set the density ρAR

and wave velocity cAR in the AR to make the wave from the 
fluid fully attenuated by: 

	H9W � HI�1 . �XI�, J9W � JI/�1 . �XI� .  (9) 

Rewriting the motion equation for a harmonic wave with 
angular frequency ω gives: 

YMKLM �1 . �XI�²[ . NMON5M � 0.            (10) 

In the function reported here, σ
0
 (which can also be a 

function of x [7]), is a constant related to the damping ratio. 
The corresponding solution is: 

[��, ]� � [I4^�YP6�5�46_5,             (11)

where k=ω/c0 is the wavenumber, σ =σ
0
k is the damping 

coefficient, and the term 46_5 leads to the attenuation of 
the wave during propagation. 
In this way, the wave is entirely absorbed and no wave is 
reflected to the PD. However, the application of a PML is 
not as easy as that of a VAR in the current FE software. 

3.2 Novel Viscoelastic Absorbing Region  
Through the two previous sections, it is easy to note that 

VAR and PML have basic principles in common: one is 
“absorbing”, the other one is avoiding reflection, either by 
continuously changing the material properties or keeping 
the acoustical impedance matched. If we have a deeper 
insight, we can find that in the aspects of absorbing, the 
nature of performance by changing material properties in 
VAR is quite similar to that of PML, as for isotropic 
material, the phase velocities of longitudinal wave and 
transverse wave are defined respectively, by:  

JO � `aTTb ,  J� � `accb ,              (12)

where �"" and �dd are the correspondent stiffness 
component. 

Based on the definition of the PML, it seems that 
something can be done to improve the performance of the 
VAR.  

In the two-dimensional case of a Lamb wave, the 
propagation is along the x1 direction, and it will 
perpendicularly impinge onto the AR. In this case, if the 
material properties CIJ in the VAR are defined as (3), to 
reduce the reflection during propagation by improving the 
match between acoustical impedances of the two regions, 
the density H9W of the VAR can be correspondingly defined 
as: H9W � bLe"U^9f ghGijkM	                (13) 

As phase velocities of elastic waves are related to elastic 
constants, to further minimize the size of the AR, a new 
definition of the VAR that reduces the stiffness when 
increasing the imaginary part of CIJ in the AR will lead to a 
higher number of wavelengths within the AR. This is 
introduced as: 

l�9W � �^m e1 . f 57GiE � �: f 57GiEkH9W � bLe"6f ghGijU^9f ghGijk
	             (14) 

This definition is confirmed by comparisons between 
different VAR using a 2D FE model as shown in Fig. 3. In 
the model, both the parameters A and La are optimized for 
the most efficient performance of VAR, attenuating the 
incident waves by 60 dB while keeping the AR as short as 
possible. 

Fig. 3: 2D model for testing the efficiency of the new VAR.

In the 2D model, the left end is the classical VAR 
defined by (5) with a length of 6λMAX, which is more than 
sufficient to remove all the reflections from this side, while 
the right side is the newly defined VAR with a length of 
β*λMAX, with β being an optimization parameter. An 
incident wave of a single mode such as A0, S0, A1, or S1 is 
generated with a Gaussian-distributed normal force applied 
on both surfaces of the plate. The displacement at the plate 
surface in the region between the excitation zone and the 
AR, as noted with solid points in figure 3, is monitored.  

Since mode conversion during reflection will give rise 
to some new modes not existing in the incident wave, a 
Fourier transform is applied to distinguish all of these 
modes and further attest to the efficiency of the AR. The 
reflections are plotted in figure 4(a). The reflection 
coefficients R are calculated and plotted in figure 4(b). This 
is done with the aim of checking the efficiency of the VAR, 
as well as optimizing the length La and the coefficient A.  

After checking all four cases with the different single 
incident mode, it is confirmed that the length of the new 
VAR can be reduced from 3λMAX to almost 1.5λMAX with 
the requirement of R<0.001 being satisfied. 
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Fig. 4: Optimization of AR with 5mm thick aluminium 
plate using monitored u displacement of S1 mode incident 
at frequency 0.6MHz, (a) Fourier transform result of u
displacement, A=3, β=0.5; (b) calculated reflection 
coefficients for optimum coefficient A with β=1.5, (⎯) and 
(−−) for the two biggest reflected modes, respectively. 

4 3D Viscoelastic Absorbing Region  
In this section, we present an example of ultrasonic 

guided waves propagation in 3D plate to test the 
performance of the new defined VAR. The VAR with 
reduced size is used all around the PD of the plate as shown 
in figure below. We keep the same VAR width as in the 2D 
study (previous section). Concerning the VAR thickness, it 
should be equal to that of the plate to avoid any reflection 
of waves.  

Fig. 5: The 3D setting of VAR 

The efficiency of the VAR is confirmed in 3D modeling by 
comparing the attenuations caused by a classical VAR and 
the new VAR using a 4 mm-thick Aluminium plate model 
with coexistence of A0, S0 and SH0 modes. To demonstrate 
clearly the processes of full attenuation of all waves, La is 
set to be 4 times max(λA0, λS0, λSH0), in the direction of 
propagation (x1), at the excitation frequency. The frequency 
used in this numerical experience is 250 KHz, so the 
maximum wavelength λMAX is equal to that of S0 (λS0) 
which is about 21 mm. Corresponding to S0, A0 and SH0

modes respectively, the displacement components u, v and 
w monitored at the median plane of the plate (thickness/2) 
and in the middle of the PD width (Lx3/2), are plotted in 
figure 6. As we can remark, the amplitudes of the waves 
decrease significantly during the propagation in the 
absorbing region. By comparison with the classical AR 
(plotted with a black line with squares), the new AR appear 
more efficient: only 1.5 λMAX is needed to make the waves 
completely vanish in the new AR versus 3 λMAX in the 
classical one. In addition, we can also clearly observe 
continuous reductions of wavelengths, which are mainly 
due to the changes in material properties, and lead to the 
accelerated attenuations of waves.  

Fig. 6: Comparison between mode attenuations using (-) 
new AR and (-�) classical AR: S0 mode (a), A0 mode (b), 

and SH0 mode (c). 

5 Conclusion 
In this paper, a brief review of the use of absorbing 

region was given. The main difference between a perfectly 
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matched layer and a viscoelastic absorbing region was 
outlined. Concerning the absorbing region, different 
mathematical expressions (discrete exponential, continuous 
exponential, polynomial) used to simulate the AR in 
different previous works were listed and compared. These 
expressions are all based on the definition of the 
viscoelastic constant (the commonly noted CIJ). The most 
efficient among them was extended to a new formula which 
includes a modification on the density of the AR to make it 
a complex number. The mathematical expression for 
density is selected such that the acoustic impedance of the 
AR is equal to that of the propagation domain. This new 
absorbing region was tested in a case of 3D numerical 
simulation of ultrasonic guided wave propagation. Some 
comparisons with a classical AR were performed. In 
conclusion, thanks to this VAR: 

� CPU time is saved since the VAR size was 
reduced by 50%, 

� the displacement field is continuous at the PD/AR 
interface, 

� no reflection appeared at this interface. 
� post-processing of numerical simulations is 

simplified.  
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