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The Variational Theory of Complex Rays (VTCR) is a predictive computational tool that has been developed to

solve mid-frequency problems. This is a wave approach that involves exact solutions of the governing equation,

and a non classical variational formulation for handling boundary conditions of the problem. No fine discretization

is therefore necessary to find an approximated solution, and the model sizes are consequently drastically reduced

in comparison with the element based methods. This results in a more efficient prediction technique for vibration

problems, especially in the mid-frequency ranges. This presentation discusses how the VTCR can be used for

the analysis of complex 3-D acoustic problems. Its performances will be compared to the element-based methods

through validation examples, in order to highlight its superior efficiency over the standard numerical prediction

techniques.

1 Introduction
In recent years, the use of numerical simulation tech-

niques in design, analysis and optimisation of systems has

become an indispensable part of the industrial design pro-

cess. The standard Galerkin finite element method (FEM

[1]) is a well established computer aided engineering tool

which is commonly used for the analysis of time-harmonic

dynamic problems. However, the use of continuous, piece-

wise polynomial shape functions leads to very large models

and is associated to numerical difficulties, such as the pol-

lution error, which in practice restricts its application to the

low-frequency range.

In recent year, a variety of techniques have been pro-

posed to minimise the last cited drawbacks and as a result,

increase the practical application range of the FEM to higher

frequencies. Among these techniques, we have the prede-

fined reduced bases [2], the Galerkin least-squares FEM [3],

the quasi-stabilized finite element method [4], the partition

of unity method [5], the generalized finite element method

[6], residual-free bubbles [7] and the quasi optimal Petrov-

Galerkin method [8]. They have all shown their capacity to

reduce computational costs and solve numerical difficulties.

However, the range of frequency solved by these methods is

still lower than the mid and high-frequency range.

Apart from the FEM and all the last cited methods, there

is another family of methods, the so called Trefftz methods

[9], which differ from the FEMs by their choice of shape

functions. Indeed, instead of using approximated functions,

exact solutions of the governing differential equations are

used for the expansion of the field variables. These approaches

include, for example, a special use of the partition of unity

method [10], the ultra-weak variational method [11], the least-

squares method [12], the discontinuous enrichment method

[13], the element-free Galerkin method [14], the wave bound-

ary element method [15] and the wave-based method [16].

The Variational Theory of Complex Rays (VTCR), devel-

oped in this paper, belongs also to the category of the nu-

merical techniques which uses exact solutions of the gov-

erning equation to solve the problem. The decisive advan-

tage of such methods (common to all Trefftz methods) is that

no refined discretization is necessary, as they use exact so-

lutions of the governing equation. Therefore, the model size

and computational effort are considerably reduced compared

to element-based methods. The main differences among all

these approaches is the treatment of the transmission condi-

tions (between the sub-structures) and the boundary condi-

tions, and the type of shape functions used.

The VTCR was introduced in [17] and is based on an

original variational formulation of the problem which was

developed in order to allow the approximations within the

substructures to be a priori independent of one another. Thus,

in each substructure, any type of shape function can be used,

as soon as it verifies the governing equation. This gives to the

approach a great flexibility and, consequently, efficiency as

any type of function with a strong mechanical content can be

used without any difficulty. The second feature defining the

VTCR is the introduction of two-scale approximations with

a strong mechanical content: the solution is described as the

superposition of an infinite number of plane waves which sat-

isfy the governing equation exactly. All the wave directions

are taken into account. The unknowns of the problem are

their amplitudes.

In [18] and [19], the VTCR was used to predict the vibra-

tional response of a 3-D plate assembly. In [20], plates with

heterogeneities were taken into account. In [21], this theory

was extended to shell structures. The calculation of the vibra-

tional response over a range of frequencies was presented in

[22]. The use of the VTCR for transient dynamics problems

was covered in [23]. The extension to acoustic problem was

made in [24] and its adaptive version was developed in [25].

It was shown through many examples that this approach was

capable of finding an accurate solution by using few dofs.

In this paper, the VTCR is extended to three-dimensional

(3D) Helmholtz problems. To this effect, the VTCR formu-

lation is first reviewed in Section 2. Then in Section 3, the

space of 3-D approximated shape functions that verify the

governing equation is defined. Numerical and CPU perfor-

mance results obtained with the 3-D VTCR are presented in

Section 4. Finally, the conclusion of this work and directions

for future research are offered in Section 5.

2 The Variational Theory of Complex
Rays for Helmholtz problems

2.1 The reference problem
Let us consider a general three dimensional interior steady

state dynamic problem on an acoustic cavity Ω, filled with a

fluid characterised by its speed of sound c0, its density ρ0

and its damping coefficient η. The steady state dynamic be-

haviour of Ω is studied at a fixed circular frequency ω. All

description quantities can be written thanks to the complex

numbers: an amplitude Q(x) is associated to the quantity

Q(x)eiωt, where x represents the position and i =
√−1 the

imaginary unity.

The problem to be solved is then the following: find the

pressure p ∈ H1(Ω) such that:∣∣∣∣∣∣∣∣∣∣∣
Δp + k2 p = f in Ω

p − Z.Lv(p) = hd over ∂ZΩ

p = pd over ∂pΩ

Lv(p) = vd over ∂vΩ

(1)
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where k = (1 − iη)k0 = (1 − iη)
ω

c0

is the wave number, f

a loading function, Z an impedance coefficient and Lv(�) an

operator defined as Lv(�) =
i
ρ0ω

∂�
∂n
=

i
ρ0ω

nT .∇(�), n being

the outward normal to ∂Ω. hd, pd and vd denote respectively

a prescribed excitation over ∂ZΩ, a prescribed pressure over

∂pΩ and a prescribed velocity over ∂vΩ.

LetΩ be partitioned into NΩ non-overlapping sub-cavities

ΩE , and denote ΓE,E′ = ∂ΩE ∩ ∂ΩE′ . The reference prob-

lem (1) becomes: find the pressure (p1, . . . , pE , . . . , pNΩ ) ∈
H1(Ω1) × · · · × H1(ΩE) × · · · × H1(ΩNΩ ) such that:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ΔpE + k2 pE = f in ΩE

pE − Z.Lv(pE) = hdE over ∂ZΩE

pE = pdE over ∂pΩE

Lv(p) = vdE over ∂vΩE∣∣∣∣∣∣ pE = pE′

Lv(pE) = −Lv(pE′ )
over ΓE,E′

(2)

The terms pE , ZE , pdE , hdE and vdE correspond to the pres-

sure, the impedance coefficient and the prescribed excitations

over the cavity ΩE , and the last two equations represent the

continuity conditions over ΓE,E′ .

2.2 The VTCR formulation
The VTCR formulation is obtained from the boundary

value problem (2) by rewriting it in a weak form. The follow-

ing functional spaces S E
ad and S E

ad,0 are required: these spaces

of functions satisfying respectively the un-homogeneous and

the homogeneous Helmholtz equation (the first equation of

problem (1) considering or not the loading function) in the

whole sub-cavity ΩE :

S E
ad =

{
pE ∈ H1(ΩE) | ΔpE + k2 pE = f ,∀x ∈ ΩE

}
(3)

S E
ad,0 =

{
pE ∈ H1(ΩE) | ΔpE + k2 pE = 0,∀x ∈ ΩE

}
(4)

The VTCR formulation is:

Find
{
(p1, . . . , pE , . . . , pNΩ ) ∈ S 1

ad × S E
ad × · · · × S NΩ

ad

}
such that:

Re

⎧⎪⎪⎨⎪⎪⎩1

2

nel∑
E=1

∫
∂ZΩE

(pE − ZLv(pE) − hdE) .Lv(δpE)dS

+

(
pE

Z
− Lv(pE) − hdE

Z

)
.δpEdS

+

nel∑
E=1

∫
∂pΩE

(pE − pdE) .Lv (δpE)dS

+

nel∑
E=1

∫
∂vΩE

Lv(pE) − vdE .δpEdS

+
∑

E,E′<E

1

2

∫
ΓE,E′

(
(pE − pE′ ) .Lv(δpE − δpE′ )

+Lv(pE + pE′ ). (δpE + δpE′ )
)

dS
}
= 0

∀
{
(δp1, δp2, · · · , δpNΩ ) ∈ S 1

ad,0 × S E
ad,0 × · · · × S NΩ

ad,0

}
(5)

It is shown in [26] that this formulation is equivalent to

the reference probleme (2) if there is some damping (through

η or the real part of Z).

Then, all that is necessary, in order to develop approxima-

tions from the VTCR, is to verify (5) in a finite dimensional

subspace S E,h
ad of S E

ad (resp. S E,h
ad,0 and S E

ad,0).

2.3 Discretization of the admissible spaces
The solutions of space S E

ad (see (3)) are generated by the

sum of a particular solution pp
E(x) (associated to the loading

function f , and computed thanks to the Green functions) and

a solution p0
E(x) that satisfies the homogeneous part of the

dynamic equation. For ΩE of star like form, it is shown in

[27] for two dimensional acoustic problems and in [28] for

3D problems that p0
E(x) belongs to the set of functions gener-

ated by an integral distribution of plane waves which satisfy

the homogeneous Helmholtz equation, also known as Her-

glotz wave functions. This distribution of plane waves can

be written as

p0
E(x) =

∫
C

AE(C)eik(C)·(x−xE )dC (6)

where C is the unit circle for 2-D problems and the unit

sphere for 3-D problems and xE a reference point located

in ΩE . AE(C) represents the amplitude of the waves over all

the direction of propagation in the 2-D or 3-D space, also

denoted as the amplitude portrait.

3 The 3-D version of VTCR with spher-
ical harmonics decomposition of plane
waves amplitudes

3.1 Pressure field approximation
As presented in section 2.3, the pressure field is sough as

a Herglotz wave function. It is an integral repartition of plane

waves over all the direction which, for the 3-D case, can be

written as:

p0
E(x) =

∫ π

θ=−π

∫ π

ϕ=0

AE(θ, ϕ).eik(θ,ϕ)·(x−xE )dθsinθ dϕ (7)

where AE describes the amplitudes of the plane waves prop-

agating in the (θ, ϕ) 3-D spherical direction and k(θ, ϕ) their

wave vectors.

A truncated Laplace serie is used to describe the ampli-

tude portrait AE(θ, ϕ). This serie is the 3-D extension of the

Fourier serie used in 2-D. Then, apart from the particular so-

lution pp
E(x) (see section 2.3), the discrete space S E,h

ad ⊂ S E
ad

taken in (5) may be written as

S E,h
ad = span

{∫ π

θ=−π

∫ π

ϕ=0

Ym
l (θ, ϕ)eik(θ,ϕ).(x−xC )dθsinθ dϕ

m = −l, ..., l, l = 0, ...,NE}
= span

{
Φm

l (x),m = −l, ..., l, l = 0, ...,NE

}
(8)

where Ym
l (θ, ϕ) =

√
2.(l − m)!

(l + m)!
.Pm

l (cosθ).eimϕ, with Pm
l (X) =

(−1)m

2l.l!

(
1 − X2

)m/2 ∂m+l(X2 − 1)l

∂Xm+l the Legendre polynom, is

the spherical harmonics of non negatice index l and momen-

tum m. Parameter m varies from−l to l. The set
{
Ym

l (θ, ϕ)
}
|m|�l�∞

forms a complete orthogonal system on the unit sphere con-

cidering the classic L2 scalar product.

3.2 Number of shape functions to use
Figure 1 reports the plot of the energy defined by eΩE (Φm

l ) =
1

ρ0ω

∫
ΩE

Φm
l (x)Φm

l (x)dΩ of each shape functionΦm
l on a 1 m
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x 1 m x 1 m cubic cavity Ω filled with air at 1000 Hz. One

can see that the energy of the shape functions decreases with

order l. Then it is possible to predict the right number of

shape function that must be used in 3-D Helmhotz problems

to reach a desired precision. Indeed, for a sub-cavity ΩE ,

higher index lmax must verify:

∀l � lmax max
|m|�l

eΩE (Φm
l )

eΩE (Φ0
0
)
� 10−r (9)

where r is a given number related to the desired precision.

0 10 20 30 40 50 60 70 -100
-50

0
50

10010
-60

10
-40

10
-20

10
0

Figure 1: Evolution of the energy of the Fourier VTCR

shape functions Φm
l versus its order l and momentum m.

4 Numerical results

4.1 Cubic wave guide
First, let us consider a simple cavity. The domain Ω is

a cube with dimensions [0, L] × [0, L] × [0, L] and the pre-

scribed Robin boundary conditions are hd = pex − Z.Lv(pex)

such that the exact solution pex is a plane wave propagat-

ing in the spherical direction (θex = 0.8o, ϕex = 2.3o). This

choice has been retained as the wave direction does not corre-

spond to any particular direction in the spherical coordinates.

The cavity Ω is taken in its whole geometry, without any dis-

cretization in sub-cavities. The convergence with respect to

the number of shape functions used in S E,h
ad (see (8)) is eval-

uated for the three considered cases: kL = 5, kL = 10, and

kL = 15. The results are visible on Figure 2. The relative

error ε(p) =
||p − pre f ||2L2(Ω)

||pre f ||2L2(Ω)

of the approximated solutions is

used. As one can see, the 3-D VTCR presents a very good

convergence rate. Indeed, all the curves rapidly decreases

toward very small values. Moreover, even with very small

values of r in criterion (9) (for example for r = 1 which

corresponds to the first point in each decreasing curve) the

associated errors are quite small (less that 2% in the present

cases).

4.2 Three dimensional car cavity
The 3-D VTCR is used to solve an acoustic problem de-

fined on a car cavity visible on Figure 3. The cavity is filled

with air (ρ0 = 1,2 kg.m−3, c0 = 344 m.s−1 and η = 10−5) and

is excited by a point source located in the front right part of

the cavity. As one can see, boundary conditions can be a nor-

mal impedance condition with two different impedance val-

ues Z = 845−55i Pa.s.m−1 on the seats and Z = 615.4−1887i
Pa.s.m−1 on the other boundaries, or a hardwall on the front

and rear windows. The decomposition of the cavity in sub-

cavities can be seen on Figure 3.

Figure 2: Convergence on the pressure field of the 3-D

VTCR for a cubic wave guide problem with dimensions

[0, L] × [0, L] × [0, L] with Robin boundary conditions (see

Section 4.1): kL = 5, kL = 10 and kL = 15 .

Figure 3: Definition of the car cavity of section 4.2

(boundary conditions and decomposition into sub-cavities).
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The solution of this problem at 1700 Hz is plotted on Fig-

ure 4. Different spatial snapshots in the car have been repre-

sented to show the pressure in the whole cavity. They have

been computed for r = 3 in criterion (9) leading to 16342

DOFs used.

As the 3-D VTCR permits one to solve such a complex

problem, some industrial interesting quantities can be com-

puted. To this effect, we have plotted the RMS average pres-

sure in the two cavities of interest visible on Figure 3. They

correspond to the cubic zone of 0.2 m length of the sound

”ambiance” near the head of the front and rear passengers.

This quantity has been computed on 64 points equally dis-

tributed in each cavity of interest. The results can be seen on

Figure 5. On that figure, the RMS value has been superposed

to the pressure of all the 64 points. Such an information could

be interested for the design of the car cavity.
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Figure 5: Evolution of the pressure of all the 64 points (grey

curves) and the RMS average pressure (red bold line) inside

the front left cavity (left) and rear right cavity (right) defined

in Figure 3.

5 Conclusion
The extension of the VTCR to 3-D acoustic problems in

the medium frequency range is presented. This extension

is based on the spherical harmonics expansion of the ampli-

tudes of the plane waves that are used in the VTCR.

Two different examples of different complexities are con-

sidered to assess the performances of the 3-D VTCR. The

first example shows the excellent convergence rate of the

VTCR. The last example, an industrial car cavity, shows that

the 3-D VTCR can run on very complex 3-D examples.

Some foregoing future problems are these one: the use

of the Fourier approximation in three dimensional assembly

of plates; the investigation of vibro-acoustic examples; the

definition of a general frameworks for complex structural vi-

bration problems.

Acknowledgments
The authors gratefully acknowledge the ITN Marie Curie

project GA-214909 ”MID-FREQUENCY - CAE Method-

ologies for Mid-Frequency Analysis in Vibration and Acous-

tics”.

References
[1] O. C. Zienkiewicz, The Finite Element Method,

McGraw-Hill, London, 1977.

[2] C. Soize. Reduced models in the medium frequency

range for the general dissipative structural dynamic sys-

tems. European Journal of Mechanics and A/Solids,

17:657-685, 1998.

[3] I. Harari and T.J.R. Hughes. Galerkin/least-squares fi-

nite element methods for the reduced wave equation

with non- reflecting boundary conditions in unbounded

domains, Computer Methods in Applied Mechanics

and Engineering, 98(3):411-454, 1992.

[4] I. Babuska, F. Ihlenburg, E.T. Paik, and S.A. Sauter.

A generalized finite element method for solving the

helmholtz equation in two dimensions with minimal

pollution. Computer Methods in Applied Mechanics

and Engineering, 128:325-359, 1995.

[5] J.M. Melenk and I. Babuska. Approximation with har-

monic and generalized harmonic polynomials in the

partition of unity method. Computer Assisted Mechan-

ics and Engineering Sciences, 4:607-632, 1997.

[6] T. Strouboulis, K. Copps, and I. Babuska. The gener-

alized finite element method: an example of its imple-

mentation and illustration of its performance, Interna-

tional Journal for Numerical Methods in Engineering,

47:1401-1417, 2000.

[7] T.J.R. Hughes. Multiscale phenomena: Greens func-

tions and the dirichlet-to-neumann formulation and

subgrid scale models and bubbles and the origins of

stabilized methods, Computer Methods in Applied Me-

chanics and Engineering, 127(1-4):387-401, 1995.

[8] A. F. D. Loula and D. T. Fernandes. A quasi optimal

Petrov-Galerkin method for Helmholtz problem. Inter-

nat. J. Numer. Methods Engrg., 80:1595 - 1622, 2009.

[9] E. Trefftz, Ein gegenstuck zum ritzschen verfahren, in:

Second International Congress on Applied Mechanics,
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