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Localisation of sources of sound in viscous flows is an important issue in aeroacoustics. That topic concerns both

academic and industrial communities. Time reversal method is widely used in linear acoustics for various purposes

such as imaging or synthesizing complex wavefields. Nevertheless, time reversal method cannot be simply trans-

posed to aeroacoustics due to the basic assumptions on which it relies. Here, an extended procedure is proposed to

deal with the problems of reversing information in presence of flows and dissipation, two phenomena contradictory

with the time reversal method. It is theoretically shown that time reversal method can be extended by using both

the flow reverse theorem and the properties of the matched filter theory. Three cases are performed:steady flows

with no dissipation, steady flows with dissipation and unsteady flows. For the first two cases, it is shown that time

reversal method extension theoretically works. The latter configuration cannot be correctly treated theoretically.

Then, numerical simulations supporting these results are presented. A special attention is paid to configurations

dealing with viscous unsteady flows, which give good results contrary to what is predicted.

1 Introduction
Localisation of sources of sound in viscous flows is an

important issue in aeroacoustics. That topic concerns both

academic and industrial communities. The definition and the

localization of the sources of noise in flows is still an open

problem. Indeed, the concept of sources itself is fuzzy and

no common definition is accepted by all the community. So,

the localization of aeroacoustic sources from the knowledge

of the far-field pressure remains a challenge.

One of the main difficulties is that different sources may

induce the same far acoustic pressure field (no-uniqueness

of the relationship between sources and fields [6]). This non-

uniqueness of the solution explains the difficulty of that prob-

lem and the variety of methods proposed to solve it. One may

cite the acoustic analogy approach, the causality approach or

the direct resolution of the inverse problem.

The first group of methods relies on the famous Lighthill’s

analogy [14] or improved versions [10, 4, 13]. The applica-

tion of such methods requires the choice of the source term

and the propagation operator. Consequently, an a priori knowl-

edge about the location and the nature of the acoustic sources

is assumed. Then, they may suffer from limitations and am-

biguities. For instance, previous turbulent jet noise investi-

gations have not directly demonstrated that the noise sources

actually consist in quadrupole-type sources. In this sense,

based on acoustic analogy, equivalent mathematical sources

may not correspond to real physical aeroacoustic sources.

The second group of aeroacoustic source localization pro-

cedures is based on the causality property. It consists in ex-

tracting the flow region which exhibits the highest correlation

with the far acoustic pressure signal. In such a way, it is as-

sumed that the source is defined in a statistical sense. These

approaches may suffer from limitations due to the difficulty

in well extracting the aerodynamic events or aerodynamic re-

gions which are best correlated to the far pressure field [7, 8].

The third group of methods deals with solving the in-

verse problem directly from the equations without a priori.
In this context, the time reversal method is appealing since

it has been successfully applied in acoustics (without flow)

for different kinds of problems: imaging, source localization,

wavefront synthesis or communications [11]. The time rever-

sal method appears to be a powerful method to solve inverse

problems. The key idea is to use the reversibility of equations

to back propagate information in time and retrieve original

state for a given configuration. It relies mainly on two basic

assumptions: conservation of energy and reciprocity of the

medium [20, 21, 2].

Nevertheless, in aeroacoustics, the presence of flows breaks

the property of reciprocity and flows are generally viscous.

At the glance, time reversal method seems not to be ap-

plicable. The present paper discusses the adaptations to per-

form to use it in aeroacoustics for viscous flows. It gath-

ers the results of two recent publications [5, 9]. First of

all, it is shown how to adapt the method to recover reci-

procity, and to exploit the intrinsic qualities of robustness

of the time reversal method. Three cases have to be distin-

guished: steady flows with no dissipation, steady flows with

dissipation and unsteady flows. For the first two cases, it is

shown that the time reversal method extension theoretically

works. The latter configuration cannot theoretically be cor-

rectly treated. Then, numerical simulations supporting these

results are presented. A special attention is paid to configura-

tions dealing with viscous unsteady flows, which give good

results contrary to what is predicted.

2 Theoretical analysis
The goal of this paper is to investigate the possibility to

use an extended time reversal method to localize sources of

sound in flows with dissipation processes. The sources can

be created by different mechanisms. In the present paper, we

deal with mass injection or with sound produced by the flow

itself (nonlinear effect). The problem can be described by the

Navier-Stokes equations:
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where the flow fields are density ρ, velocity vi, pressure p,

entropy s and temperature T . The source of mass is noted m
and the components of the source of force are fi. The viscous

tensor is assumed to be τi j = 2μ
(
si j − 1

3
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)
, correspond-

ing to a Newtonian fluid, with μ the dynamic viscosity and

si j =
1
2

(
∂ui
∂x j
+
∂u j

∂xi

)
. The thermal conductivity is denoted by

κ and the viscous dissipation is defined by Φ = τi j si j. In the

above equations, the Einstein convention is used. To com-

plete this set of equations, an additional equation about the

state of the medium is required. In what follows, the dissi-

pation of the medium will be set through parameter μ (in dry

air μ0 = 1.8 10−5kg.m−1.s−1, this value provides the refer-

ence and μ∗ = μ/μ0 is the dimensionless dynamic viscosity).

As mentioned in the introduction, two assumptions are

necessary to use time reversal method for a given set of equa-

tions: reciprocity and energy conservation. Reciprocity is
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characterized by the possibility to exchange emitter and re-

ceiver: a signal emitted at point A and received at point B,

is the same as a signal emitted at point B and received at

point A. Obviously, the presence of flows breaks that prop-

erty [17]: for a simple configuration such as the propagation

of a pulse between two points (namely A and B) in presence

of a uniform flow along direction AB, the signal emitted at

point A and received at point B, is not the same as a sig-

nal emitted at point B and received at point A. In terms of

source localization, a shift will appear between the detected

source position and the original one. That shift depends on

the magnitude of the flow. Consequently, the reciprocity is

an essential relation and needs to be recovered.

For configurations with steady flows, it is possible to re-

trieve reciprocity by inverting the direction of the flows be-

tween the direct stage and the time reversal one. That re-

lation known as reverse flow reciprocity was introduced by

Howe [13] and used recently by Deneuve et al. [5]. Even

if it seems very delicate in an experiment, from a numeri-

cal point of view, it is possible and consists in inverting both

time and flow direction : v(x, t) → −v(x,−t) between the di-

rect simulation and the time reversed one. Note that all other

flow variables are reversed only in time (t → −t). Thus, ap-

plying reverse flow reciprocity allows to recover the essential

property of reciprocity required by the time reversal method.

Unfortunately, it is not always possible to apply reverse flow

reciprocity: it holds only for steady flows. Consequently, the

extension of time reversal method proposed in the present

paper is theoretically only valid for this kind of flows.

Conservation of energy is the second key property nec-

essary for time-reversal method. Let’s imagine waves prop-

agating in a dissipative medium during the direct way evo-

lution. In a time reversal experiment (numerical or experi-

mental one), waves are back-propagated in the medium and

undergo the dissipative effects twice. Note that dissipation

does not break reciprocity. Indeed, in the last example, emit-

ter and receiver can be exchanged. The effects due to dissipa-

tion are a loss of amplitude and a degradation of the original

wave field. In acoustics, it has been shown that the quality of

the focusing by time reversal method, is degraded [22]. The

degradation consists in a reduction of the amplitude of the

main lobe compared to a medium without dissipation but also

in an increase of the levels of side lobes. Nevertheless, the

maximum of amplitude is well-localized, even though energy

conservation is broken. That is an illustration of the robust-

ness of the time reversal method. The robustness is due to the

fact that the time reversal method acts as a spatio-temporal

matched filter [19]. That property means that even if energy

is lost, using time reversal method ensures to back-propagate

the maximum of amplitude at the appropriate point x0 and at

the correct time T − t0 where x0 is the original point of emis-

sion, t0 is the original time of emission, and T is the time

for which the time reversal method is applied. Note that the

result is only valid for point x0. There is no guarantee on the

control for the other points of the wave field, that is why side

lobes may increase [19]. Hence, the matched filter property

is very important and justifies the use of time reversal method

in absorbing media. It shows that localization will be correct

(in both time and space) even though the absolute level and

eventually the side lobes will be degraded.

From the above considerations, three cases must be dis-

tinguished:

1. configurations with steady flows and no dissipation

In this case, the time reversal method can be fully ap-

plied. Assumption of energy conservation is correct,

and the assumption of reciprocity can be made by us-

ing the reverse flow reciprocity property. Consequently,

in such a case, the time reversal method will retrieve

the source with correct localization and correct level.

2. configurations with steady flows and dissipation

In this case, again, it is necessary to ensure the reci-

procity by reversing the flows. Then it is crucial to

deal with the spatio-temporal matched filter property.

Indeed, that property ensures that sources localization

and time of emission of sound sources will be retrieved

even if a slight degradation of the original state will

occur. Consequently, the time reversal method can be

applied to localize position and time of emission of

sound sources to all configurations with steady flows

even if dissipation exists, only the levels will not be

retrieved.

3. configurations with unsteady flows,

In this last case, it is not possible to justify theoret-

ically the use of the time reversal method. Indeed,

reciprocity cannot be retrieved by applying the flow

reverse technique. That holds for viscous or inviscid

flows. Nevertheless, as will be shown in the section

devoted to numerical results, in some cases it is rea-

sonable to use that method even though it is not theo-

retically justified.

3 Numerical Method
In order to illustrate the properties discussed in the pre-

vious section, various numerical experiments are proposed.

These numerical experiments have to satisfy the model de-

scribing the problem: the Navier-Stokes equations and to

be able to handle the time reversal method proposed above.

In the next section the numerical solver used to solve these

equations is briefly described, then the methodology for a

numerical time reversal experiment is given.

3.1 Numerical solver
The Navier-Stokes equations (Eqs. 1, 2, 3) are solved

in two-dimensional space with the code CAAmeleon (home-

made code). This code is based on a reformulation of the

equations under a pseudo-characteristic formulation proposed

by Sesterhenn [18]. One of the main interests of the pseudo-

characteristic formulation is that it enables an the implemen-

tation of efficient boundary conditions separating acoustic

and hydrodynamic disturbances [16]. That property is very

useful to implement time reversal method. Indeed, it re-

quires to impose as inflow boundaries of the time reversal

stage what has left the computational domain during the di-

rect simulation (see next section for more details about the

methodology).

The pseudo-characteristic formulation of the Navier-Stokes

equations provides a decomposition of the pressure, velocity

and entropy fluxes which enables a very simple and natural

use of upwind schemes. To enforce both numerical stabil-

ity and accuracy for wave propagation problems, a high or-

der upwind Dispersion Relation Preserving (DRP) scheme is

used. In the interior nodes the fourth order accurate upwind

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

2355



biased DRP scheme is used and this scheme is modified near

the computational domain boundaries [15]. Time integration

is performed using a third order TVD Runge-Kutta scheme.

3.2 Methodology of a numerical time reversal
experiment

In the next section, different numerical experiments are

proposed. All of them rely on the same numerical procedure:

1. Direct Simulation In the first stage, for a given con-

figuration, all flow variables are computed by solving

the Navier-Stokes equations. The flow variables are

stored on the boundaries of the computational domain

and inside the computational domain at the last time

step.

2. Time reversed simulation In the second stage, the

data stored during the direct simulation are used as in-

flow conditions on the boundaries of the computational

domain. Before applying these boundary conditions,

data are time reversed, and the direction of flows is

also reversed.

3. Data Analysis During the second stage, the Complex

Variables Method [5], [12] is used to track some par-

ticular acoustical events. In particular, this technique

allows to determine the acoustical information in the

aerodynamic flow without any post-processing.

4 Results and discussion
Using the numerical methodology described in the previ-

ous section, the three kinds of configurations are explored:

localizing acoustical sources in (i) steady flow without dissi-

pation, (ii) steady flow with dissipation, (iii) unsteady flow.

4.1 Configuration I: propagation in a steady
flow without dissipation

It has been established in the previous section, than the

extension of the time reversal method for aeroacoustics is

theoretically able to localize the position and the level of

source of sound in a medium with steady flow without dissi-

pation. In order to illustrate that result, a numerical experi-

ment satisfying these assumptions has been done: four gaus-

sian spots of density have been imposed as initial condition

in a medium with a shear flow. The shear flow is charac-

terized by U0(x, y, t) = u0 + αy and V0(x, y, t) = 0 where

u0 = 100m.s−1 and α = 10s−1. U0 is the x-component of the

velocity while V0 is the y-component. The direct simulation

is done from 0 to 1000ΔT as the reversed one (ΔT is the time

step chosen to respect the CFL condition). Injection of mass

is known to generate acoustical disturbances. These waves

can be seen in Fig 1 where the pressure field is represented

at three different instants (a) initial t = 0, (b) t = 152ΔT
and (c) t = 352ΔT . Starting from the four gaussian spots,

the pressure field becomes quite complex due to the interac-

tion of the acoustical waves with the shear flow. The right

column of Fig 1 presents the pressure fields associated to the

time reserved simulation at (d) t = 648ΔT , (e) t = 848ΔT ,

(f)t = 1000ΔT . From these figures, it is clear that the time

reversal method enables to recover both the localization and

the amplitude of the source.

Figure 1: Direct (left column) and time reversed (right

column) pressure waves due to initial gaussian spots of

density injected in a shear steady flow at three different

times ((a) t = 0ΔT , (b) t = 152ΔT , (c) t = 352ΔT , (d)

t = 648ΔT , (e) t = 848ΔT , (f)t = 1000ΔT )

4.2 Configuration II: propagation in a steady
flow with dissipation

To assess the performance of the method of localization

through steady flow but with dissipation, the following con-

figuration has been used: the steady flow is made with a vor-

tex: U0(x, y, t) = −αy exp( 1−r2

2
) and U0(x, y, t) = αx exp( 1−r2

2
)

where α gives the magnitude of the vortex and r =
√

x2+y2

r0

describes the distance from the core (r0 is the size of the vor-

tex). The dissipation is chosen through parameter μ (here

μ∗ = 10. Again, the acoustical source is due to the injection

of a gaussian spot of density.

The left column of Fig. 2 shows that the cylindrical wave

(the simulation is two-dimensional) emanating from the source

is strongly distorted by the presence of the vortex. At this

stage it is difficult to evaluate the effects due to the dissipa-

tion. The right column presents the time reversed simulation

for three different instants (d) t = 648ΔT , (e) t = 848ΔT ,

(f)t = 1000ΔT . It can be seen that the waves back-propagate

to the good location: the distortion of the wavefront are well

compensated and the original shape of the gaussian spot is

retrieved. Nevertheless, the level of pressure at the source is

not the same than the original one. Because of the viscous

flow, the energy is dissipated during the first stage (direct

computation) as well as during the time reversal stage. In

this case, the only effect is on the amplitude of the pressure

field.

Different simulations have been made for different values

of parameter μ∗ (μ∗ ∈ [0, 5.5 104]). For all these simulations,

the location of the initial spot of pressure is well retrieved.

Only the level is not correct except for μ∗ = 0 where the

error is very weak (but exists because of the numerical dissi-

pation). Fig. 3 shows the error between the original level and

the one found by the time reversal method: the error grows

with the magnitude of dissipation effect as expected. It is no-

ticeable that the error function is not linear and this is due to

the presence of the vortex [9].
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These numerical experiments support the theoretical pre-

dictions: the extended time reversal method applied to local-

ize sources in a steady flow with attenuation allows to find

the correct position of the source but not its level. Even if

this limitation is important, the position of the source is an

important piece of information.

Figure 2: Direct (left column) and time reversed (right

column) pressure waves due an initial gaussian spot of

density injected in steady flow (one vortex) with μ∗ = 10 at

three different times ((a) t = 0ΔT , (b) t = 152ΔT , (c)

t = 352ΔT , (d) t = 648ΔT , (e) t = 848ΔT , (f)t = 1000ΔT )

0 1 2 3 4 5 6
x 10

4

0

0.1

0.2

0.3
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Figure 3: Relative error between the level of the initial

source and the level predicted by the extended time reversal

procedure

4.3 Configuration III: propagation in unsteady
flow

The third case deals with the problem of finding source

in an unsteady flow. A case of interest is the case for which

the unsteady flow is the acoustical source itself. A two-

dimensional plane mixing layer can generate sound [3]. In

the present paper, the flow consists in two uniform streams

with Mach numbers 0.5 and 0.25, respectively, for the upper

and lower parts. The two regions are matched by a hyper-

bolic tangent profile for the streamwise velocity. Outflow

conditions are specified at the top, the bottom and the left

boundaries. Moreover, the flow is forced at the fundamen-

tal frequency predicted by the linear stability theory and its

first, second and third subharmonics. The inflow condition

used on the left boundary is similar to the one used in Colo-

nius et al. [3]. With such deterministic inflow perturbations,

two quasi-stationary vortex pairings are observed within the

computational domain. The regions where pairings occur are

associated with the sources.

Figure 4 shows at the same time the instantaneous pres-

sure field at frequency f0/2 (thanks to the complex variables

method, not described here [5]) which is superimposed onto

the vorticity field. Note that the vorticity field is obtained

from the direct simulation.The first test case using μ∗ = 0

allows to recover previous results [5]: the pressure field con-

verges towards the origin of the acoustic wave of f0/2. This

origin coincides with the first pairing observed in the instan-

taneous vorticity field known to be the region where sound

is generated [1]. That result shows that the time reversal

method enables to localize sources generated in a mixing

layer. But because of the unsteadiness of the flow, it has

been theoretically predicted that time reversal method can-

not be used. Nevertheless, in that configuration, the region

where flow is unsteady is confined in the zone of high vor-

ticity. The extent of this zone is measured by the vorticity

thickness (here δω ≈ 1). In comparison, the wavelength as-

sociated to acoustical waves (characteristic length for acous-

tic process) is higher. For the highest frequency considered

(and so the smallest acoustical wavelength) which is f0/2,

the wavelength is about equal to 25. That difference between

the characteristic scales of aerodynamic and acoustical pro-

cesses explains why time reversal method seems to be work-

ing when the interest is focused on acoustical variables. Time

reversed acoustical waves are only slightly altered by the no-

reciprocity which is essentially localized in a very small re-

gion of space compared to the acoustical wavelength.

5 Conclusion
An extended time reversal method to localize the source

of sound in aeroacoustics have been proposed. Theoretically,

three configurations can been distinguished: (i) localization

in steady flows without dissipation, (ii) localization in steady

flows with dissipation and (iii) localization in unsteady flows.

Successive numerical experiments involving localization of

acoustical sources by the extended time reversal method have

been presented in the above configurations. For steady flow

configuration, numerical results demonstrate that the time re-

versal procedure allows to detect the origin of the aeroacous-

tic source but the source amplitude is reduced due to the vis-

cous energy loss. It is then confirmed that the application of

the methodology permits to recover the shape and the loca-

tion of the source of sound. Furthermore, it is emphasized

that even if the presence of an unsteady flow (including vis-

cous fluid) theoretically breaks the reversibility of the fluid

motion equations, such an approach is robust and effective

for the detection of particular aeroacoustic sources. The po-

tential of the proposed methodology is then underlined and

such an approach offers some new potential future applica-

tions in determining and analyzing the physical mechanism

by which turbulence can generated sound.
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[2] R. Carminati, J. Sàenz, J.-J. Greffet, M. Nieto-

Vesperinas, ”Reciprocity, unitarity, and time-reversal

symmetry of the s matrix of fields containing evanes-

cent components”, Phys. Rev. A 62 012712-1-7 (2000).

[3] T. Colonius, S. Lele, P. Moin, ”Sound generation in a

mixing layer”, J. Fluid Mech. 330 375-409 (1997).

[4] N. Curle, ”The influence of solid boundaries upon

aerodynamic sound”, Proc. Royal Soc. 231A 505-514

(1955)

[5] A. Deneuve, P. Druault, R. Marchiano, P. Sagaut, ”A

coupled time-reversal complex differentiation method

for aeroacoustic sensitivity analysis: towards a source

detection procedure”, J. Fluid Mech. 642, 181-212

(2010)

[6] A.P. Dowling, J.E. Ffwocs Williams, Sound and
sources of sound, Ellis Horwood-Publishers (1983)

[7] P. Druault, M. Yu, P. Sagaut, ”Quadratic stochastic es-

timation of far field acoustic pressure with coherent

structure events in a 2D compressible plane mixing

layer”,Int. J. Num. Meth. Fluids 62 906-926 (2010).

[8] P. Druault, X. Gloerfelt, T. Mervant, ”Investigation of

flow structures involved in sound generation by two-

and three-dimensional cavity flows”, Computers and
Fluids 48 (1) 54-67 (2011)

[9] P. Druault, R. Marchiano, P. Sagaut, ”Localization of

aeroacoustics sound sources in viscous flows by a time

reversal method”, submitted to Journal of Sound and
Vibration(2012)

[10] J. E. Ffwocs Williams, D. Hawkings, ”Sound gener-

ation by turbulence an surfaces in arbitrary motion”,

Proc. Roy. Soc. London A264, 321-342 (1969)

[11] M. Fink, D. Cassereau, A. Derode, C. Prada, P. Roux,

M. Tanter, J.-L. Thomas, F. Wu, ”Time-reversed acous-

tics”, Progress Report in Physics631933-1995 (2000)

[12] E. Gaudard, F. Vanherpe, R. Marchiano, P. Druault,

”’Numerical analysis of an aeroacoustic field using

Complex Variable Method”, Acoustics2012 conference,

Nantes (France).

[13] M. Howe, Acoustics of fluid-structures interactions,

Cambridge University Press, 1998.

[14] M. Lighthill, ”On sound generated aerodynamically: I.

General theory”, Proc. R. Soc. London 211, 564-587

(1952).

[15] S. Lu, P. Sagaut, ”Pseudo-characteristic formulation

and dynamic boundary conditions for computational

aeroacoustics”, Int. J. Num. Meth. Fluids 53 201-227

(2007)

[16] S. Lu, P. Sagaut, ”Direct sensitivity analysis for smooth

unsteady compressible flows using complex differenti-

ation”, Int. J. Num. Meth. Fluids 53 1863-1886 (2007)

[17] P. Roux, M. Fink, ”Experimental evidence in acoustics

of the violiation of time-reversal invariance induced by

vorticity”, Europhys. Lett. 3225-29 (1995)

[18] J. Sesterhenn, ”A characteristic-type formulation of

the Navier–Stokes equations for high order upwind

schemes”, Comp. and Fluids 30 37-67 (2001).

[19] M. Tanter, J.-L. Thomas, M. Fink, Time reversal and

the inverse filter, J. Acoust. Soc. Am. 108 (2000) 223–

234.

[20] A. Tarantola, ”Theoretical background for the inversion

of seismic waveforms, including elasticity and atten-

uation”, Pure and Applied Geophysics 128, 365-399

(1988)

[21] J.-L. Thomas, ”Etude des mirroirs à retournement tem-
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