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On the basis of a recently proposed vibro-acoustical model of the piano soundboard (X. Boutillon and K. Ege,

Vibroacoustics of the piano soundboard: reduced models, mobility synthesis, and acoustical radiation regime.

submitted to the Journal of Sound and Vibration, 2011.), we present several models for the coupling between

the bridge and the ribbed plate of the soundboard. The models predict the modal density and the characteristic

impedance at the bridge as a function of the frequency. Without parameter adjustment, the sub-structure model

turns out to fit the experimental data with an excellent precision. The influence of the elastic parameters of wood

is discussed. The model predictions are compared for pianos of different sizes and types.

1 Introduction
The piano soundboard (Figs. 1 and 2) is entirely made of

wood. It consists in several parts: a panel on which is glued a

slightly curved bar (the bridge), in the direction of the grain

of the panel’s wood. A series of thin, nearly parallel ribs

are glued in the orthogonal direction. Eventually, thick bars

isolate one or two cut-off corners which may exceptionally

be ribbed themselves.
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Figure 1: Soundboard of the Atlas upright piano. Rib side

with bridges superimposed as thick red lines. This upright

soundboard include one ribbed zone and two cut-off corners

(blue-delimited lower-left and upper-right triangles).

The grain of the main panel’s wood defines the x-direction.

The description of the soundboard relies on the following pa-

rameters:

• Material parameters: ρ, Ex (or cx =
√

Ex/ρ), Ey (or

cy =
√

Ey/ρ), νxy, Gxy (or an orthotropy parameter γ,
equal to one for elliptical orthotropy).

• Geometrical parameters: area A, geometry, boundary

conditions (here, considered as clamped), dimensions

of the various elements (wood panel, ribs, bridges, inter-

rib spaces). The thickness h of the wooden panel turns

out to be an important element of the description.

It is assumed here that ribs are made of the same wood as

the main panel: the Yong’s modulus Er in their main direc-

tion is Ex.

2 Vibratory regimes and models
According to experimental modal analyses [1, 2] (see Fig. 3),

the vibratory behaviour of a piano soundboard exhibits two

distinct regimes:

Figure 2: Steinway model D. Geometry of the soundboard

with 17 ribs, one cut-off corner, and a bridge.

• In low frequencies, the vibration extends over the whole

soundboard, including the cut-off corners. The modal

density is roughly constant and does not depend on the

location of the point where the vibration is observed or

generated.

• Above a frequency fg ≈ 1.2 kHz, the modal density

depends slightly on the point of observation and

strongly decreases with frequency. The vibration is lo-

cated near the point Q where it is observed or gener-

ated. More precisely, the vibration is confined between

ribs which act as structural wave-guides.

Low-frequency models proposed below are based on or-

thotropic plate-elements representing large zones of the sound-

board. In particular, ribs and the wood panel are consid-

ered altogether as a homogeneous plate. The high-frequency

model is that of waves travelling in a structural wave-guide

of width p, with kx =
nπ
p

. The vibration extends over three

inter-rib regions: the one containing Q and the two adja-

cent ones. The frequency limit fg between those two regimes
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Figure 3: Modal density of the Atlas piano soundboard.

Dots: observed values at points A1 (•), A2 (�), A3 (�), and

A5 (∗), in Fig.1. The estimated values are the reciprocal of

the moving average of six successive modal spacings,

reported at the mid-frequency of the whole interval.

(Tab. 1) is obtained when kx reaches
π

p
in the low-frequency

model.

p (cm) fg (Hz)

Atlas 13 1184

Hohner 11.2 1589

Schimmel 12 1394

Steinway model B 12.2 1477

Steinway model D 12.7 1355

Table 1: Mean p of the inter-rib widths for the different

pianos and frequency limit fg between the low-frequency

and the high-frequency regimes for average properties of

wood.

3 Descriptive parameters
For the string, the soundboard represents a mechanical

impedance Z(ω) =
F(ω)

V(ω)
. At a given location, the mobility

Y(ω) =
1

Z(ω)
can be computed as the sum of the mobilities

of the normal modes of the structure. The description that

is attempted here ignores the differences between locations

of the string on the bridge. The models that are presented

below do not predict damping which can be taken according

to experiments or chosen more or less arbitrarily.

Given these hypotheses, the mechanical structures that

compose the piano soundboard – plates, bars, structural wave-

guides – are only characterised by the surfacic density μ = ρh

(in generic terms), one or several rigidities D =
Eh3

12(1 − ν2)

(idem) or dynamical rigidities d =
D
μ

, their length L (for

bars) or area A (for plates), and their shape and boundary

conditions.

It can be shown that, except for the very first modes, this

description is equivalent to:

• a modal density n( f ), depending mostly on A (or L), d,

and, for low frequencies only, on the shape and bound-

ary conditions.

• a characteristic impedance Zc (or mobility Yc) which is

the geometrical mean of Z( f ) (resp. Y( f )).

For a plate:

np( f ) =
Ap ζ

1/2

π d 1/2
x

F − np,corr( f ) Yc,p( f ) =
np

r Mp

(1)

where ζ2 = Ex/Ey, F is a coefficient depending on the di-

rection of orthotropy (typically π/2) and np,corr( f ) is a low-

frequency correction depending on boundary conditions. The

characteristic mobilities are given according to Skudrzyk’s

theory of the mean value [3]. In general, r = 4, except when

the plate is excited at one boundary, where it becomes 2.

For a bar (such as the bridge):

nb( f ) =
Lb

d 1/4
b

(2π f )1/2
Yc,b( f ) =

np

r Mp

(1 − j) (2)

In general, r = 4, except when the bar is excited at one end,

where it becomes 2.

The case of a structural wave-guide needs a special dis-

cussion which cannot be included here; the result is the same

as for a bar, with r = 2 in general, r = 1 when excited at one

end.

4 Homogenisation of a ribbed plate
In the y-direction (weak direction of the panel’s wood),

the main zone of the soundboard (excluding cut-off corners)

is stiffened by more or less regularly spaced ribs. The pur-

pose of homogenisation is to derive the elastic properties of

an orthotropic equivalent plate with similar mass, area, and

boundary conditions as the main zone of the soundboard.

Following Berthaut [4, 5] and somewhat arbitrarily, we

assume elliptical orthotropy for the equivalent plate. Thus,

only two rigidities need to be considered, namely DH
x and

DH
y . Each rib (of width a) defines a cell extending between

two mid-lines of adjacent inter-rib spaces. The rigidity of a

portion of a cell of width q and extending between y and y+dy
is obtained by searching the position H (in the z-direction,

orthogonal to the soundboard plane) of the neutral line that

minimises the composite rigidity of the plate associated with

the rib of height β. It comes:

H(y) =
−qEyh2 + aErβ

2

2
(
qEyh + aErβ

) (3)

Dy(y) =
Ey

3
(h3 + 3h2H + 3hH2) +

Era
3q

(β3 − 3Hβ2 + 3H2β)

(4)

Since ribs are slightly irregularly spaced along the x-direc-

tion (cell have different widths q(x)) and since each rib has

a varying height β(y) along the y-direction, we adopt the ap-

proximation that 1/DH
x,y are the average flexibilities (inverse

of rigidities) in each direction. The computation has been

made numerically, on the basis of the geometry of each rib

and inter-rib space.

5 Models for the association of the
bridge and the ribbed plate

How to describe the association between the ribbed plate

and the bridge has been debated for long [6, 7, 8]. Three so-
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lutions are presented here. They are compared when applied

on the piano labelled "Atlas", of which we know simultane-

ously the detailed geometry and the results of an experimen-

tal modal analysis.
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Figure 4: Modal densities in the Atlas upright piano, for

different models.

Solid blue line: bridge (mapple). Solid green line: cutoff

corners (Norway spruce). Solid red line: sum of the modal

densities of the sub-plates (Norway spruce) separated by the

bridge (homogenised equivalent plate). Solid black line:

total of the previous modal densities (sub-structure model).

Dashed line: modal density of the whole soundboard

according to the first approximation proposed by Skudrzyk

(independant plate and bridge).

Dash-dotted line: modal density of the whole soundboard

according to the second approximation proposed by

Skudrzyk (see text).
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Figure 5: Characteristic impedances of the Atlas upright

piano, for different models.

Solid blue line: bridge (mapple). Solid red line: sum of the

characteristic impedances of the sub-plates (Norway spruce)

separated by the bridge (homogenised equivalent plate).

Solid black line: total of the previous characteristic

impedances (sub-structure model).

Dashed line: characteristic impedance of the whole

soundboard according to the first approximation proposed

by Skudrzyk (independant plate and bridge).

Dash-dotted line: characteristic impedance of the whole

soundboard according to the second approximation

proposed by Skudrzyk (see text).

According to Skudrzyk [3], a simple approximation con-

sists in considering the plate and the bridge as uncoupled.

It follows that the modal densities simply add and that the

characteristic impedances of each element add as well. Sku-

drzyk’s comment is that the resulting error is small because

this approximation generates two errors that partly compen-

sate each other. The results are given by the dashed black

lines in Figs. 4 (modal density) and 5 (characteristic

impedance).

Skudrzyk presents a supposedly better approximation for

describing the association of a single bar with a plate: the

dynamics in the bridge direction (here: Ox) is ruled by the

bridge, which must be considered as mass-loaded by the plate.

On the other hand, the plate must be considered as stiff-

ened by the bridge. The modal densities and characteristic

impedances of these modified elements must then be added.

Based on our understanding of Skudrzyk’s expressions, re-

sults are given by the dash-dotted black lines in Figs. 4 (modal

density) and 5 (characteristic impedance). As a matter of

fact, the match with experimental data is not better than the

previous, more simple approximation.

A third interpretation of the coupling between the bridge

and the ribbed plate can be given in terms of sub-structures.

Since the bridge extends over almost the whole soundboard,

we have considered that it splits the main zone of the sound-

board in two plates, and represents an quasi-boundary condi-

tion for each of the two (sub-)plates. Due to the contrast in

stiffness between the bridge and the equivalent plate, we as-

sumed a clamped boundary condition. The results are given

in solid black lines Figs. 4 (modal density) and 5 (charac-

teristic impedance). Since, in our view, this model is bet-

ter grounded and yields results which better fit experimental

findings, it is adopted in the rest of the article. It should be

noticed that the different models yield much closer values for

the characteristic impedance than for the modal densities.

6 Influence of the characteristics
of wood

It is very difficult to know precisely what are the elastic

properties of woods in a given piano. In the results presented

above, we have retained values given by the literature [9, 10]

for Norway spruce: ρ = 440 kg/m3, Ex = 15.8 GPa (corre-

sponding to cx = 6000 m/s), Ey = 0.85 GPa (corresponding

to cy = 1400 m/s). The influence of the wood quality are

presented in Figs. 6 (modal density) and 7 (characteristic

impedance) for four sets of values corresponding to Norway

spruce, to average values (according to the literature and to

collected experience of one of us), to a mediocre wood, and

to an excellent wood. It is clear that the precision of the fit is

subject to a correct knowledge of the wood.

7 Application to different pianos
The sub-structure model has been applied to different pi-

anos: three uprights (Atlas, Hohner, Schimmel, respectively

of height 120, 110, and 120 cm) and two grands (Steinway

B and Steinway D). One Bösendorfer (Imperial prototype) is

currently under investigation but not reported here. The pre-

dicted modal densities, up to fg are presented in Fig. 9 and

the predicted characteristic impedances in Fig. 10. The most

striking feature of these figures is that these parameters do

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

2752



10
2

10
30

0.02

0.04

0.06

0.08

0.1

Frequency (Hz)

M
od

al
 d

en
si

ty
 (

H
z−

1 )

Figure 6: Modal densities of the Atlas upright piano

obtained for different elastic parameters of spruce.

Solid line: Norway spruce (ρ = 440 kg/m3, Ex = 15.8 GPa

(corresponding to cx = 6000 m/s), Ey = 0.85 GPa

(corresponding to cy = 1400 m/s)).

Dash-dotted line: average spruce (ρ = 380 kg/m3,

Ex = 11.5 GPa (corresponding to cx = 5500 m/s),

Ey = 0.74 GPa (corresponding to cy = 1400 m/s)).

Dotted line: mediocre spruce (ρ = 400 kg/m3, Ex = 8.8 GPa

(corresponding to cx = 5000 m/s), Ey = 0.35 GPa

(corresponding to cy = 1000 m/s)).

Dashed line: excellent spruce (ρ = 350 kg/m3,

Ex = 12.6 GPa (corresponding to cx = 6000 m/s),

Ey = 1.13 GPa (corresponding to cy = 1800 m/s)).

Circles: experimental determinations.
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Figure 7: Characteristic impedances of the Atlas upright

piano obtained for different elastic parameters of spruce.

See Fig. 6.

not differ considerably between pianos. This is remarkable

considering that, for example, a 1 mm variation in the thick-

ness of the soundboard1 causes a variation in modal density

and impedance that is of the same order of magnitude as the

differences between pianos. The same can be observed with

regard to the variation in the characteristics of wood. One

may therefore conclude that the modal density and charac-

teristic impedance are typical of the identity of the piano in-

strument, as such, at least in the present days.

An interesting difference between uprights and grands is

that grands have a larger modal density and a larger char-

acteristic impedance. The larger modal density can be seen

1In the Steinway B and D, the thickness of the wood panel varies between

9 mm in the centre to 6 mm at the rim.

Figure 8: Red lines (identical in both frames): characteristic

impedance reconstructed for the piano measured by

Giordano [11] according to the second Skudrzyk’s model

(same as in Fig. 5).

Upper frame: synthesised impedance. Lower frame:

Measured impedance, after Giordano [11].
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Figure 9: Modal densities of three upright pianos, and two

grand pianos (values obtained for average characteristics of

spruce).

as a natural consequence of the increase in size. However,

for a homogeneous plate, the standard relationship between

n and Yc would lead to a variation of n and Zc in opposite

directions. One may conclude that a similar variation is only

attained by a careful geometrical design.

Observing the details of the geometries reveals rib spac-

ing is slightly irregular for all pianos. We have interpreted

this elsewhere [8] as a way to localise the vibration in high
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Figure 10: Characteristic impedances of three upright

pianos, and two grand pianos (values obtained for average

characteristics of spruce). The low-frequency strong

variation for the Schimmel upright is an artefact of the

model.

frequencies. Space is missing here to report on this in more

details.

It can also be observed that the height of the ribs, the

proportion between the high part of the rib and each of their

end parts, sometimes their width, systematically vary from

bass to treble. On one of the uprights, even the rib height

of the central part varies, and this differently along each rib.

This indicates a careful adjustment of the local mechanical

(and therefore, vibratory) properties. All these are ignored

by the present global, average model. This variation of the

impedance as a function of the pitch needs to be examined

in order to account for the quality of each piano model, in

other words, for the rendered match between the acoustical

properties of a note and its pitch.
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