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This work was initially motivated by a design problem for the absorption of sound connected to the determi-
nation of the optimal profile of a discontinuous spatial distribution of porous materials and of the geometric
properties. It extend the work proposed in [1], to a 3D problem involving a 2 D grating. The acoustic proper-
ties of a medium resistivity porous layer backed by a rigid plate containing periodic rectangular irregularities,
creating a multi-component diffraction gratings is investigated. Numerical and experimental results show that
the structure possesses total absorption peaks at the frequencies of the modified mode of the layer and/or of
the trapped mode associated to the irregularities, when designed as proposed. These results is explained by an
analysis of the acoustic response of the whole structure and especially by the modal analysis of the configura-
tion. When more than one irregularity per spatial period is considered, additional higher frequency peaks are
observed.

1 Introduction

This work was initially motivated by a design problem
for the absorption of sound connected to the determination
of the optimal profile of a discontinuous spatial distribu-
tion of porous materials and of the geometric properties.
Porous materials (foam) suffer from a lack of absorption
at low frequencies, when compared to the values at higher
frequencies. The usual way to solve this problem is by
multi-layering [2, 3, 4]. The purpose of the present article
is to investigate an alternative to multi-layering by consid-
ering periodic irregularities of the rigid plate on which a
porous sheet is attached, thus creating a diffraction grat-
ing and therefore extending previous works[1] already con-
ducted in 2-dimensional configurations to 3-dimensional
ones.

The influence of the irregularity was previously inves-
tigated by use of the multi-modal method in[1], by con-
sidering periodic rectangular air-filled irregularities of the
rigid plate on which porous sheets are often attached in
2-dimensional configurations. This was found to lead, in
the case of one irregularity per spatial period, to a total
absorption peak associated with the excitation of the fun-
damental modified mode of the backed layer. This mode is
excited thanks to the surface grating. Such configurations
have been widely studied in room acoustics whereby irreg-
ularities are introduced to the walls in a space to enhance
the diffusion and absorption effects[5], but the considered
phenomenon is mostly related to resonance of the irregu-
larities. Other works related to surface irregularities were
carried out, notably related to local resonances associated
with fractal irregularities[6, 7]. In addition, the influence
of the addition of a volumic heterogeneity on absorption
of porous layers was previously investigated by use of the
multipole method, by embedding a periodic set of high-
contrast inclusions, whose size is not small compared with
the wavelength, in a macroscopically-homogeneousporous
layer backed by a rigid flat backing in [8] or by periodic ir-
regular rigid backing in [9], whose thickness and weight
are relatively small. It was found, that the structure pos-
sesses almost total absorption peaks, associated with trap-
ped modes that trap the energy between the heteorogeneities
and the rigid plate and associated with the resonances of
the irregularity that trap the energy inside the irregularity,
below the so-called quarter wavelength resonance of the
plate, when irregularities and heterogeneities are correctly
designed.

In this paper, the effect of a 3-dimensional periodic ir-
regularity of the rigid backing on which a porous slab is
attached is investigated theoretically, numerically and ex-
perimentally.

2 Formulation of the problem

2.1 Description of the configuration

The 3D scattering problem is shown in Fig.1. Before
the addition of the structured backing, the layer is a porous
material M[1] saturated by air (e.g., a foam) which is mod-
elled as an equivalent fluid using the Johnson-Champoux-
Allard model. The upper and lower flat and mutually-
parallel boundaries of the slab, whose x3 coordinates are
L and 0, are designated by ΓL and Γ0 respectively. The up-
per semi-infinite material M[0], i.e. the ambient fluid (the
air medium) that occupiesΩ[0], and M[1] are in firm contact
through ΓL (i.e. the pressure and normal velocity are con-
tinuous across ΓL [p(x)] = 0 and [ρ−1∂n p(x)] = 0, wherein
n denotes the generic unit vector normal to a boundary and
∂n designates the operator ∂n = n · ∇).
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Figure 1: Representation of a d-periodic fluid-like porous
slab backed by a rigid wall that contains periodic cubic

and macroscopic irregularities excited by a plane incident
wave.

The rigid backing contains cubic irregularities with pe-
riod d = (d1, d2), i.e. along the x1 and x2 axis respec-
tively, that create a diffraction grating. The J-th irregular-
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ity of the unit cell occupies the cubeΩ[2(J)] of height bJ and
widths w(J)

1 , w(J)
2 along the x1 and x2 axis. This irregular-

ity is occupied by a fluid material M[2(J) ]. The boundary
of Ω[2(J)] is composed of the rigid portion ΓN(J) (Neumann
type boundary conditions, ∂n p(x) = 0) and of Γ(J) through
which media M[2(J) ] and M[1] are in firm contact (conti-
nuity of the pressure and normal velocity). The x1 and
x2 coordinate of the center of the base segment of Ω[2(J) ]

are d(J)
1 and d(J)

2 . Γ0 is also composed of a rigid portion
ΓN (Neumann type boundary conditions). The configura-
tion is more complex than the one already studied in[1] in
the sense that the structured backing is composed of a 2-
dimensional grating consisting in a 2-dimensional periodic
set of cubes. The method of solution, which is quite close
to the one used in[1], is also briefly summarized.

We denote the total pressure, wavenumber and wave
speed by the generic symbols p, k and c respectively, with
p = p[0], k = k[0] = ω/c[0] in Ω[0], p = p[1], k = k[1] =

ω/c[1] in Ω[1], and p = p[2( J)], k = k[2( J)] = ω/c[2( J)] in
Ω[2(J) ].

Rather than to solve directly for the pressure p̄(x, t)
(with x = (x1, x2, x3)), we prefer to deal with p(x, ω), re-
lated to p̄(x, t) by the Fourier transform

p̄(x, t) =
∫ ∞
−∞

p(x, ω)e−iωtdω. Henceforth, we drop the ω

in p(x, ω) so as to denote the latter by p(x).
The azimuth ψi of the incident wavevector ki is mea-

sured counterclockwise from the positive x1 axis, while its
elevation θi is measured counter-clockwise from the plane
x1 − x2. The incident wave propagates in Ω[0] and is ex-
pressed by pi(x) = Aiei(ki

1 x1+ki
2 x2−k[0]i

3 (x3−L)), wherein ki
1 =

−k[0] cos θi cosψi, ki
2 = −k[0] cos θi sinψi, k[0]i

3 = k[0] sin θi

and Ai = Ai(ω) is the signal spectrum.
The plane wave nature of the incident wave, and the

periodic nature of ∪J∈JΩ[2(J) ] imply the Floquet relation

p(x1 + nd1, x2 + md2, x3) = p(x1, x2, x3)eiki
1nd1+iki

2md2 ;
∀x ∈ R3 ; ∀(n,m) ∈ Z2 .

(1)
Consequently, it suffices to examine the field in the central
cell of the plate which includes the cubes Ω[2(J)], J ∈ J in
order to obtain the fields, via the Floquet relation, in the
other cells.

The uniqueness of the solution to the forward-scattering
problem is assured by the radiation conditions :

p[0](x)−pi(x) ∼ outgoing waves ; |x| → ∞ , x3 > L . (2)

2.2 Field representations inΩ[0],Ω[1] andΩ[2(n)]

Separation of variables, the radiation conditions, and
the Floquet theorem lead to the representations:

p[0](x) =
∑

(n,m)∈Z2

[
e−ik[0]

3nm(x3−L)δnδm + Rnmeik[0]
3nm(x3−L)

]
ei(k1n x1+k2m x2),

p[1](x) =
∑

(n,m)∈Z2

(
f [1]−
nm e−ik1

3nmx3 + f [1]+
nm eik1

3nm x3
)

ei(k2n x1+k2m x2),

(3)

where δn is the Kronecker symbol, k1n = ki
1 +

2nπ
d1

, k2m =

ki
2 +

2mπ
d2

, and k[ j]
3nm =

√
(k[ j])2 − (k1n)2 − (k2m)2, with

Re
(
k[ j]

3nm

)
≥ 0 and Im

(
k[ j]

3nm

)
≥ 0, j = 0, 1. The reflection

coefficient of the plane wave denoted by the subscripts n
and m is Rnm, while f [1]±

nm are the coefficients of the diffracted
waves inside the slab associated with the plane wave also
denoted by the subscripts n and m.

Referring to[1], the pressure fields p[2(J)], admits the
pseudo-modal representation, that already accounts for the
boundary conditions on ΓN(J) :

p[2(J) ](x) =
∑

(N ,M)∈N2

D[2(J) ]
NM

cos
(
k[2(J) ]

1N

(
x1 − d(J)

1 + w(J)
1 /2
))

cos
(
k[2(J)]

2M

(
x2 − d(J)

2 + w(J)
2 /2
))

cos
(
k[2(J) ]

3NM

(
x3 + b(J)

))
,

(4)
wherein k[2(n)]

1N = Nπ/w(J)
1 , k[2(J) ]

2M = Mπ/w(J)
2 and k[2(J) ]

3NM =√
(k[2(J)])2 − (k[2(J) ]

1N )2 − (k[2(J) ]
2M )2, with Re

(
k[2(J) ]

3NM

)
≥ 0 and

Im
(
k[2(J) ]

3NM

)
≥ 0, ∀J ∈ J and D[2(J)]

NM
are the coefficients of

the pseudo modal representation.

3 Determination of the acoustic prop-
erties of the structure

3.1 Application of the continuity conditions
across ΓL and Γ0

We apply successively

•

∫ d1
2

−
d1
2

∫ d2
2

−
d2
2

· × ei(k1l x1+k2g x2)dx1dx2 to the continuity i)

of the pressure field and ii) of the normal compo-
nent of the velocity across ΓL and to the continuity
of iii) the normal component of the velocity across
ΓN
⋃(⋃

J∈N Γ(J)
)
,

•

∫ w(J)
1

0

∫ w(J)
2

0
· × cos

(
k[2(J) ]

1P x1

)
cos
(
k[2(J) ]

2Q x2

)
dx1dx2 to

the continuity of the pressure field across Γ(J).

Introducing the appropriate field representation therein,
Eqs.(3) and (4), and making use of orthogonality relations,
give rise to the linear set of equations. After some alge-
bra and rearrangements, this reduces to a linear system of
equations for the solution of D[2(J) ]

NM
which may be written

in the matrix form, when denoting by D the infinite column
matrix of components D[2(J) ]

NM

(A − C) D = F (5)

where F is the column matrix of elements F(t)
NM

and A

and C are two square matrices of elements A(n,t)
NM,NM, and

C(n,t)
nmNM respectively.
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3.2 Evaluation of the fields

Once (5) is solved for D[2(n)]
NM

, Rnm, f [1]+
nm and f [1]−

nm in

terms of D[2(J) ]
NM

can be evaluated and in particular

Rnm =
∑
J∈N

∑
(N ,M)∈N2

iw(J)
1 w(J)

2 α
[2(J) ]
nm

d1d2Dnmα
[1]
nm

D[2(J) ]
NM

sin
(
k[2(J) ]

3NMb(J)
)

×I−(J)
1nN I−(J)

2mMe−ik1p

(
d(J)

1 −w(J)
1 /2
)
−ik2p

(
d(J)

2 −w(J)
2 /2
)

+δnδmAi
α

[0]
nm cos

(
k[1]

3mnL
)
+ iα[1]

nm sin
(
k[1]

3nmL
)

Dnm
.

(6)
Introduced in the appropriate field expression, this leads
to the fields expression in each domain. These fields are
expressed as a sum of i) the field in the absence of the
inclusions with ii) the field due to the irregularities of the
multi-component grating.

3.3 Evaluation of the reflection and absorp-
tion coefficients

In case of an incident plane wave with spectrum Ai, the
conservation of energy relation takes the form

1 = A + R , (7)

with R the hemispherical reflection defined by

R =
∑

(n,m)∈Z2

Re
(
k[0]

3nm

)
k[0]i

3

‖Rnm‖
2

‖Ai‖2
, (8)

wherein the expressions of Rnm are given by Eq.(6). The
absorption coefficient A takes the form A = AD + AS ,
whereinAD is the inner absorption of the domainsΩ[1] and
Ω[2(J) ], ∀J ∈ J , and AS is the surface absorption induced
by the viscosity and related to the interfaces ΓL and Γ(J),
∀J ∈ J .

In our calculations, the irregularities are filled with the
air medium. Any absorption phenomenon is associated to
this material, and thus the inner absorption reduces to the
one of domain Ω[1], and the surface absorption related to
Γ(J) simplifies.

Because of the complicated shape of Ω[1] and Ω[2(n)],
but also of the non-vanishing term AS , A will not be cal-
culated byA = 1 − R.

4 Numerical results, experimental val-
idation and discussion

Numerical calculations have been performed for vari-
ous geometrical parameters (couples (d1, d2), w(J)

1 × w(J)
2 ×

b(J) and (d(J)
1 , d(J)

2 )) and within the frequency range of au-
dible sound, particularly at low frequencies. One of the
main constraints in designing acoustically absorbing ma-
terials are the size and weight of the configuration. A
L = 1 cm thick low resistivity foam (Fireflex) slab, whose
parameters are reported in Table 1 was used. These pa-
rameters have been evaluated using the traditional methods
described in [10].

The irregularities are filled with air, i.e. the ambient
and saturating fluid (M[0] and M[2(J) ]) is air (ρ[0] = ρ[2(J) ] =

φ α∞ Λ (μm) Λ′ (μm) σ (Nsm−4)

S1 0.95 1.42 180 360 8900
S2 0.99 1 70 210 7900

Table 1: Acoustical parameters of the porous material
constituting the slab of thickness L.

ρ f = 1.213 kg m−3, c[0] = c[2(J) ] =
√
γP0/ρ f , with P0 =

101325 Pa, Pr = 0.71, γ = 1.4, and
η = 1.839 × 10−5 kg.m−1.s−1).

The geometrical parameters of the configurations stud-
ied therein are:

• C1: d1 × d2 = 12 × 8 cm, d(n)
1 × d(n)

2 = 6 × 4 cm,
w(n)

1 × w(n)
2 × b(1) = 6 × 4 × 3 cm, L = 1 cm

• C2: d1 × d2 = 20 × 8 cm, d(n)
1 × d(n)

2 = 10 × 4 cm,
w(n)

1 × w(n)
2 × b(1) = 12 × 6 × 2 cm, L = 1 cm

• C3: d1 × d2 = 60 × 60 cm, d(n)
1 × d(n)

2 = 30 × 30 cm,
w(n)

1 × w(n)
2 × b(1) = 30 × 45 × 10 cm, L = 2 cm

4.1 One irregularity per spatial period

We shall be concerned with two cases: one in which
the frequency of the fundamental Trapped mode of the Ir-
regularity (TI) stands at lower frequency than the Modified
Mode of the Boundary Layer (MMBL), and one in which
the frequency of the fundamental (TI) stands at higher fre-
quency than the modified mode of the slab (MMBL). In the
first case, the MMBL would be largely excited, while in the
second one, the TI would be largely excited as already no-
ticed in[1]. The second case is obviously a particular case
of the first one, the frequency of excitation of the MMBL
being dependant on the angle of incidence.

Figure2a) depicts the absorption coefficient of the po-
rous layer of characteristic S1 (see Table 1) when backed
by a flat rigid backing and when backed by a rigid grating
of C1 geometry. The modified modes of the slab stands at
νMMBL

110 ≈ 2775Hz, νMMBL
101 ≈ 4100Hz, νMMBL

111 ≈ 6500Hz...,
while the mode of the irregularity stand at νti

000 ≈ 2800Hz,
νti

010 ≈ 4000Hz, νti
001 ≈ 5100Hz... Several remarks should

be made. First, νti
000 appears at a lower frequency than the

one calculated through νti
000 = c[2(t)]/4b(t) and is excited

around 1900 Hz. This phenomena, already encountered
in[8], is related to the boundary condition at Γ(t), which
is not a Dirichlet condition but rather a continuity condi-
tion, leading to a larger effective height of the irregularity.
The fundamental TI being lower than the first MMBL, the
energy is advected by this mode and the associated absorp-
tion coefficient is close to unity at this frequency. The thin-
ner is the porous layer, the closer is the fundamental TI to
2800Hz. Additional sharper peaks of absorption are no-
ticed at higher frequencies and are associated to excitation
of MMBL.

Figure2b) depicts the absorption coefficient of the po-
rous layer of characteristic S1 when backed by a flat rigid
backing and when backed by a rigid grating of C2 geom-
etry. The modified mode of the slab stands at νMMBL

110 ≈

1700Hz, νMMBL
101 ≈ 4100Hz, νMMBL

120 ≈ 5000Hz..., while
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Figure 2: Absorption coefficient of a porous layer of
characteristic S1 backed by a flat rigid backing (− − −)
and backed by a rigid flat backing with an air layer of

thickness b(1) in between (· · ·), a) backed by an irregular
rigid backing of characteristic C1 (—) and b) backed by

an irregular rigid backing of characteristic C2 (—).

the fundamental trapped mode of the irregularity stand at
4275Hz. In practice, this trapped mode appears around
4100Hz. The first MMBL being lower than the funda-
mental TI, the energy is advected by this mode and the
associated absorption coefficient is close to unity at this
frequency. An additional sharper peak of absorption is no-
ticed around 4100Hz and is associated to excitation of the
second and third MMBL. The excitation of the fundamen-
tal TI leads to a smooth peak leading to an increase of the
absorption around ≈ 3000Hz.

A particular feature is that the frequency of the funda-
mental TI can be correctly evaluated through the simplified
problem consisting of an air layer of the same thickness as
the height of the irregularity between the porous layer and
a rigid flat backing. The absorption peaks associated with
the fundamental TI and MMBL excitation are nevertheless
higher in case of the irregular grating.

4.2 Experimental validation

Remarkable absorption is obtained in case of periodic
irregular rigid backing, while the response of the structure
without irregularities is quite well known or at least much
more common. Experimental validation also focused on
the periodic structure, its effect having been emphasis by
comparison with the flat rigid backing in the previous nu-
merical section.

Usually, experiments related to 1D, 2D or 3D gratings
are carried out in a free field (anechoic room) and/or at
higher frequencies for a finite size sample [11].

Here, we follow the idea already exploited in[1], in
which the experimental validation was carried out by use
of an impedance tube with a square cross section. A square
cross-section impedance tube available in LAUM, 30 cm×

30 cm, whose cut-off frequency is 570Hz, is used. This
cut-off frequency corresponds to a wavelength of 60 cm.

The phenomenon related to the MMBL occurs when
the wavelength is of the order of the spatial period of the
grating. We also make use of the boundary conditions of
the impedance tube, which are perfect mirrors below the
cut-off frequency, in order to design the sample. Because
of the dimensions of the impedance tube, the spatial peri-
odicity along both x1 and x2 axis should be a multiple of
30 cm. If the profile of the unit cell is symmetric with re-
gards to the axis x1 = d1/2 and x2 = d2/2, the modelled
spatial period is (d1 × d2 = 60 cm × 60 cm, as depicted in
Figure 3.

Sample

Sample images

Square−cross section impedance tube walls

Figure 3: Cross-sectional view of the experimental set-up
and sample design.

The infinitely rigid portion of the sample was made
of four 1 cm thick aluminium plates, which were screwed
(head screw was then filled with hard plastic silicone for
the surface to be perfectly flat) in order to create a step of
10 cm height and 15 cm width along the x1 and 22.5 cm
width along the x2. A L = 2 cm thick porous foam layer
S2, whose characteristics are those reported in Table 1, was
glued to the upper part of the step. In order to keep the
porous layer flat along the step area, a screw of small di-
ameter (3mm) was added at the edge of the lower part of
the step and two nylon wires were tightened between this
screw and the upper part of the step, such that the free part
of the foam layer rests on it.

A comparison between the predicted et the measured
absorption coefficient is plotted in Figure 4. The presented
absorption coefficient is the averaged value of the absorp-
tion coefficient measured when the step of the sample lays
on the bottom edge of the impedance tube and when ro-
tated π/4. A rotation of the sample of π/2 and 3π/4 is
impossible in practice because the sample do not lay on
the step and is no more stable in the tube.

The experimental absorption coefficient is presented for
frequencies higher than 200 Hz. Below this frequency the
absorption coefficient is lower than 0.1, which is limit of
measurement. The two curves match well and therefore
validate the present method.
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Figure 4: Comparison between the absorption coefficient
of a porous layer of characteristic S2 backed by a flat rigid
backing (· · ·) and backed by an irregular rigid backing of
characteristic C3 as calculated with the present method

(—) and measured experimentally (o)

5 Conclusions

We studied, theoretically, numerically and experimen-
tally, the acoustic properties of a low resistivity porous
layer backed by a rigid plate with periodic irregularities
in the form of a grating.

We show, that the grating leads to excitation of modes,
whose frequency depends both on the characteristic of the
surrounding medium and of the characteristics of the porous
layer and on the spatial period of the configuration d1 × d2.
These modes, whose structures are close to the one of the
modes of the layer, can lead to a total absorption peak. This
absorption peak occurs at the frequency of the fundamental
modified mode of the layer and seems to be always a quasi-
total absorption peak. The trapped mode of the irregularity
also lead to quasi-total absorption peak when excited be-
low the modified mode of the slab.

Experiments were performed in a impedance tube with
square cross-section. The boundary conditions of the lat-
ter are perfect mirrors and allow us, thanks to the image
theory, to model diffraction of a plane wave at normal inci-
dence at frequencies below the cut off of the tube. Exper-
imental results are in accordance with the theory and par-
ticularly exhibit a total absorption peak at the frequency of
the fundamental modified mode of the layer.

Acknowledgments

The authors would like to thank R. Pommier for pro-
viding us Solidworks pictures.

References

[1] J-P Groby, W. Lauriks, and T.E. Vigran. Total absorp-
tion peak by use of a rigid frame porous layer backed
with a rigid multi-irregularities grating. J. Acoust.
Soc. Am., 127:2865–2874, 2010.

[2] L.M. Brekovskikh. Waves in Layered Media. Aca-
demic Press, New-York, 1960.

[3] U. Ingard. Notes on Sound Absorption Technology.
Noise Control Foundation, Poughkeepsie, 1994.

[4] O. Tanneau, J.B. Casimir, and P. Lamary. Optimiza-
tion of multilayered panels with poroelastic compo-
nents for an acoustical transmission objective. J.
Acoust. Soc. Am., 120(3):1227–1238, 2006.

[5] M.R. Schroeder. Toward better acoustics for concert
halls. Phys. Today, 33:24–30, 1980.

[6] B. Sapoval, B. Hebert, and S. Russ. Experimental
study of a fractal acoustical cavity. J. Acoust. Soc.
Am., 105:2014–2019, 1999.

[7] B. Sapoval, S. Felix, and M. Filoche. Localisation
and damping in resonators with complex geometry.
Eur. Phys. J., 161:225–232, 2008.

[8] J-P Groby, A. Duclos, O. Dazel, L. Boeckx, and
W. Lauriks. Absorption of a rigid frame porous layer
with periodic circular inclusions backed by a periodic
grating. J. Acoust. Soc. Am., 129:3035–3046, 2011.

[9] J-P Groby, A. Duclos, O. Dazel, L. Boeckx, and
L. Kelders. Enhancing absorption coefficient of
a backed rigid frame porous layer by embedding
circular periodic inclusions. J. Acoust. Soc. Am.,
130:3771–3780, 2011.

[10] J.-F. Allard. Propagation of Sound in Porous Media:
Modelling Sound Absorbing Materials. Chapman &
Hall, London, 1993.

[11] O. Umnova, K. Attenborough, and C.M. Linton. Ef-
fects of porous covering on sound attenuation by
periodic arrays of cylinders. J. Acoust. Soc. Am.,
119:278–284, 2006.

Proceedings of the Acoustics 2012 Nantes Conference23-27 April 2012, Nantes, France

1948


