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Single hole circular orifices can generate pure tone noise in industrial pipes. This phenomenon results from vortex
shedding with lock-in, as a consequence of an acoustic amplification of incipient pressure waves inside the orifice
and of an acoustic resonator outside. Key features of this phenomenon are the ability of an orifice to amplify
acoustic waves in a range of frequencies and the acoustic feedback mechanism. First, the study deals with the
estimation of the whistling ability of an orifice from an incompressible flow simulation. As the studied flow is
limited to low Mach number, this kind of simulation fairly describes the hydrodynamic instability. Superimposed
harmonic velocity perturbations allow then to identify the impedance of an orifice and so to define the frequency
at which amplification occur. The next step of the study deals with whistling features of orifices in a reverberating
duct. The extracted impedance is used in a network model, taking into account acoustic propagation and acoustic
reflections. A linear stability analysis is then performed and the whistling frequency is predicted. The parameters
controlling the whistling amplitude are finally identified. All the results of the study are compared to experiments,
showing well agreements for the whole procedure.

1 Introduction

Orifices in confined duct submitted to flow are known to
generate pure tones [1, 2, 3, 4]. These tones comes from the
combined effects of self-sustained oscillations and of non-
linear saturation mechanisms. Along the shear layer sur-
rounding the jet created when the flow past the orifice, the
interaction between acoustic perturbations and the vorticity
field is strong [5]. Function of the frequency, the interac-
tion dissipates or creates an amount of acoustic power [2].
Self-sustained oscillations can thus be created when a reso-
nant acoustic field at a frequency in the amplification range
exists in the pipe [4]. This resonant field is a consequence of
acoustic reflections at elements upstream and downstream of
the orifice. The final whistling features are set by non-linear
saturation effects.

The present paper discuss the whistling ability of an ori-
fice as well as the whistling features in a resonant pipe for
low Mach number flows. We will present how, in that case,
tools based on incompressible flow assumption around the
orifice are able to represent the phenomena acting in whistling
generation.

First, the whistling ability of an orifice will be estimated
from incompressible flow simulations. The proposedmethod-
ology is based on the Unsteady Reynolds Averaged Navier-
Stokes Equations (URANS) for an incompressible fluid and
has been previously used by Martinez et al. [6] for a T junc-
tion between three pipes and by Nakiboğlu et al. [7] for
cavities in pipes. The acoustic impedance of the orifice is
determined from these simulations, and the whistling ability
of an orifice is extracted. A good agreement is found with
experimental data.

Then, we consider an orifice in a reverberating pipe. Con-
sidering the whole system composed of a nonlinear acoustic
gain at the orifice and a linear acoustic feedback surround-
ing it, we analyse the evolution of the whistling frequency
and amplitude obtained by previous experiments. We show
that a linear stability analysis is able to predict the whistling
frequency in such a configuration and how the whistling am-
plitude is related to the feedback term and to the Strouhal
number.

2 Studied case

The case studied here corresponds to a circular orifice in-
serted in a pipe with upstream and downstream reflecting
conditions. An air flow is present in the pipe. Figure 1
presents a scheme of the studied case.
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Figure 1: Scheme of the studied configuration

The main pipe diameter is D = 0.03 m. The orifice has
a thickness t = 0.005 m and a diameter d = 0.015 m. Dif-
ferent main flow velocities UD are tested in the range 6 to 12
ms−1. These correspond to a Mach number MD ranging from
0.017 to 0.035 and to a Reynolds number between 12000 and
24000.

3 Theoretical background

This section introduces the different phenomena respon-
sible of pure tone noise generation by an orifice in confined
flow. It only focuses on low Mach number such that the fluid
compressibility inside the orifice does not play a significant
role [8, 9]. In that case, as described in subsection 3.1, the
acoustic dissipation at the orifice is totally defined by a single
complex term, which can be the impedance or a equivalent
gain expression. Then the surrounding reflection plays the
role of a feedback mechanism. The stability can be treated by
a linear stability analysis, the resulting whistling frequency
and amplitude being determined by nonlinear saturation ef-
fect. These last free phenomena are treated respectively in
subsections 3.2, 3.3 and 3.4.

3.1 Source model and impedance representa-
tion

For an incompressible fluid with a sufficiently high Reyn-
olds number, in order to neglect the viscosity, and for har-
monic perturbations of the background velocity, the pressure
difference across the orifice can be expressed as [5, 8, 10]

ΔP = (ρcZs − jρωLori) u′z, (1)

where ρ is the fluid density, c the speed of sound, ω/(2π)
the frequency of the preturbation and u′z the velocity pertur-
bation. The first term of the equation defines the pressure
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difference due to the vorticity field in the orifice jet and in-
troduces the real part of impedance Zs. It characterises all the
dissipative acoustic effect of the orifice. The second term of
the equation stands for the pressure difference created by a
pureley potential flow accross the orifice. Both terms can be
summarized in a complex impedance term Z = Zs− jωLori/c.

The definition of the aeroacoustic feature of an orifice
from an incompressible simulation needs so the determina-
tion of the complex impedance Z. The real part of the imped-
ance characterizing the acoustic source is used to define the
whistling ability of the orifice. Indeed, a negative value of
the real part of the impedance term corresponds to a po-
tential amplification of the incident acoustic fluctuation and
so to a potential whistling case. The imaginary part of the
impedance defines the inertial flow effect in the orifice. In
this paper, Both of them are retrieving from an incompress-
ible flow simulation as described in section 4.

Another representation of the acoustic dissipation due to
the orifice submitted to flow can be used [4]. It corresponds
to a gain representation and is very useful to take into ac-
count the surrounding reflection around the orifice. It takes
the form (

p+d + p−u
p+d − p−u

)
=

(
1 0
0 G

) (
p+u + p−d
p+u − p−d

)
, (2)

with G = (2 − Z)/(2 + Z) an acoustic gain. Acoustic am-
plification due to the flow trough the orifice can occur if the
modulus of G is greater than one.

3.2 Acoustic reflection and feedback

Following the formalism of Eq. (2), the acoustic feedback
of the surrounding pipe can be described by the equation

p+u − p−d = F
(
p+d − p−u

)
(3)

where F is a complex term defining the overall surrounding
acoustic reflection. It corresponds to a reflection coefficient
between the waves combinations p+u − p−d and p+d − p−u and
takes the form

F =
Ru + Rd − 2RuRd

Ru + Rd − 2
. (4)

. The reflection coefficients in Eq. (4) correspond to the mea-
sured reflection coefficient translated at the orifice location

Ru = Rm
u e− j(k++k−)Lu , (5)

and
Rd = Rm

d e− j(k++k−)Ld , (6)

where Lu and Ld are the pipe lengths from the orifice to the
upstream and to the downstream boundaries, respectively.

3.3 Linear stability analysis

The stability of the linear system composed of Eqs. (2)
and (3) can be estimated with classical linear stability anal-
ysis [11, 12]. In that case, the important parameter is the
product GF , an instability of the system being predicted if
this product is purely real and greater than one. This anal-
ysis performed in the linear regime allows to determine the
stability of the system as well as the unstable frequencies.
Unstable frequency and whistling frequency are compared in
subsection 5.2. It lust be reminded that these two frequencies
are different, the whistling frequency resulting from nonlin-
ear saturation.

3.4 Acoustic balance in whistling regime

In steady whistling regime, it is assumed that the analysis
can be focused on the fundamental frequency by introducing
an equivalent acoustic gain. Doing so, the nonlinear nature
of acoustic amplification, and the role played by harmonics
of the fundamental frequency are neglected. The harmonic
pressure peaks measured being lower by at least one order
of magnitude than the fundamental peak, the nonlinear gain
representation is assumed to hold without further proof. Let
then the steady state regime be associated to a saturated value
Gsat of the acoustic gain, according to

(
p+d + p−u
p+d − p−u

)
=

(
1 0
0 Gsat

) (
p+u + p−d
p+u − p−d

)
. (7)

This situation occurs whenever nonlinear effects inside the
orifice adapt the acoustic gain to the acoustic feedback of
the surrounding pipe. In other words, the steady state gain
cannot be considered any longer as an intrinsic property of
the orifice, it depends on the amplitude of the whistling.

Combining Eqs. (7) and (3), the balance of acoustic am-
plification and feedback can be written

GsatF = 1. (8)

The balance of gain and feedback described by Eq. (8) has
the classical form of linear oscillator studies with a single
degree of freedom [13]. The feedback term F is known to be
a key parameter for the onset of self-sustained oscillations.
In subsection 5.3, its value will be compared to whistling
amplitudes.

4 Impedance characterization from in-
compressible flow simulation

In the present section, we focus on the determination of
the impedance term defined in subsection 3.1. The determi-
nation of it is based on an incompressible flow simulation
coupled with a source processing.

4.1 Description of the simulation

The simulation of an incompressible flow through an ori-
fice is here achieved with solving the Unsteady Reynolds
Averaged Navier-Stokes Equation (URANS). The numerical
tools used in that way is Code Saturne developed at EDF
[14]. The turbulence model is the model k̄ − ω SST [15].

The simulation is performed assuming an axisymmetric
flow. The simulation is thus done on a radial section of the
pipe. The computational domain begins at a distance L1 =

2.5D of the orifice and ends at L2 = 7D after the orifice.
The wall conditions correspond to the no-slip ones and a

scalable wall law is used [14]. The mass flow rate is defined
at the inlet. The velocity profile is chosen uniform here. The
outlet corresponds to a Neumann’s condition and set the pres-
sure gradient across the outlet to zero.

The mesh of the domain is made of 99000 cells defined
as cubic as possible. The refinement is maximum at the up-
stream edge of the orifice. This point corresponds to the be-
ginning of the shear layer in the flow and its definition is
crucial in the study of whistling generation. So in this area,
the spatial discretization step is Δr = Δz = 5 × 10−5 m, with
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r the radial direction and z the longitudinal direction. Ex-
pressed in wall units, based on a turbulent velocity profile
with a mean velocity corresponding to the one in the orifice
Ud = U(D/d)2, this discretization step is r+ = z+ ≈ 5. Far
away from the orifice, the discretization is decreased up to a
value D/Δr = D/Δz ≈ 45.

The first step of the simulation consists of computing the
mean flow solution. This is achieved after a physical time on
order of 0, 03 s.

From the mean flow field solution, a fluctuating velocity
u′(t) is added at the inlet. This perturbation is uniform along
the radius of the pipe. It has been chosen harmonic with a
frequency fexc and an amplitude A. It can thus be written

u′(t) = A cos(2π fexct). (9)

The amplitude of the excitations is chosen low enough to en-
sure a linear response of the orifice. Previous experimen-
tal studies [2] have shown that non linear effects appear for
an amplitude of the excitations around few percent of the
mean flow velocity. In the present case, the value is set to
A = 0.001U. The excitation frequency fexc takes values from
500 to 4000 Hz. The frequency step is equal to 200 Hz and
is decreased down to 100 Hz in the amplification frequency
range. For each frequency, the simulation time corresponds
to four periods of the excitation signals. This value is suffi-
cient for the convergence of the solution.

Using time pressure data stored at difference location along
the pipes, the impedance term is identified from the signals
of the excitation velocity and the pressure difference. The
procedure of extraction is described in [7, 3, 10].

4.2 Results

The studied case has been characterized experimentally
by Testud et al. [2]. It corresponds to the dimensions given
in section 2. The flow velocity in the main pipe is UD =

9 m·s−1. The Mach number is thus MD = 0.026 and the
Reynolds number ReD ≈ 18000. The studied frequency range
extends from 500 to 4000 Hz.

The figures 2 and 3 present the real and imaginary parts of
the impedance term Z. Experimental1 and numerical results
are compared.
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Figure 2: Real part of the impedance Z. Black line and
cross: simulation, gray line: experiment.

In general a good agreement between experiments and
numerics is observed on the real and imaginary plots. In the

1In the experiments, the scattering matrix of the orifice has been mea-
sured. Considering the incompressible flow assumption, it is easy to express
the impedance term as function of the scattering matrix coefficients [3, 10].
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Figure 3: Imaginary part of the impedance Z. Black line and
cross: simulation, gray line: experiment.

following, a description of each part of the impedance is done
and the numerical and experimental results are compared.

First, the real part of the impedance Z plotted in figure 2
is studied. It characterizes the acoustic dissipation at the ori-
fice and is thus used to study the acoustic ability of an orifice.
Before 1500 Hz, the real part of Z is positive. In the corre-
sponding frequency range, only dissipation effects occur. In
this range, a very good agreement is found between the ex-
periments and the simulation. Then, between 1500 and 2700
Hz, the real part of Z becomes negative. This corresponds to
a frequency range where acoustic perturbations can be am-
plified. The presence of the orifice in the flow can thus create
a whistling if the surrounding acoustic reflections are suffi-
ciently high [4, 2]. This frequency range is predicted with the
numerical procedure, but some discrepancies are observed
compare to the experiments. These differences correspond in
the numerical results to an overestimation of the real part of
Z and a shift of the end of the amplification range toward the
low frequencies. Finally, beyond 2700 Hz, the real part of
Z becomes positive again and only acoustic dissipation oc-
curs. In this frequency range up to 3700 Hz, experiments
and numerics are in good agreement. Slight differences ap-
pear above 3700 Hz.

Then, the imaginary part of the impedance Z is stud-
ied. It characterizes the inertial effects in the orifice. Below
1500 Hz, the imaginary part of Z increases very slowly. As
for the real part the agreement is good between experiments
and simulation. Between 1500 and 2700 Hz, corresponding
to the potential whistling frequency range, the slope of the
imaginary part of Z is sharp and almost constant. In this
frequency range, a good agreement between the experimen-
tal and numerical results is observed up to 2000 Hz. Be-
yond this value discrepancies are observed, which becomes
larger as the frequency is closer to the limit of the range 2700
Hz. In this frequency range, differences have also been ob-
served in the real part of Z, and as the high frequency limit
of the amplification range is underestimated in the real part,
the difference observed in the imaginary part may have the
same origin. Finally beyond 2700 Hz, the imaginary part be-
comes almost constant as well in the experiments and in the
numerics. The values are however different but it may be a
consequence of the differences observed earlier in frequency.

Even if some discrepancies have been observed, the nu-
merical procedure gives promising results and an incompress-
ible URANS simulation is able to predict accurately the po-
tential whistling frequency range of an orifice. More gener-
ally, the aeroacoustical behavior of an orifice over a broad
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Figure 4: Comparison between the calculated unstable
frequencies (gray triangles) and the measured whistling

frequencies (white squares).

frequency range has been predicted with the simulation.

5 Characterization of whistling frequ-
ency and amplitude

After studying the acoustic amplification at the orifice,
we focus on characterizing the whistling frequency and am-
plitude when an orifice is surrounded by acoustic reflection
conditions. Experiments have been previously performed
[4, 3]. They are used here to compare the whistling frequen-
cies to the unstable frequencies obtained with the linear sta-
bility analysis. Also, the experimental data are used to show
the parameters controlling the whistling amplitude.

5.1 Description of the experiments

The description of the experiments is well detailed in
[4, 3]. Be it enough here to mention that we use experi-
ments being made with a constant upstream high reflecting
condition and three different downstream condition having a
decreasing reflection coefficient modulus. The pipe and the
orifice have the dimensions given in section 2. For each of
the three configurations, the flow velocity ranges from 6 to
12 ms−1.

During the experiments, the whistling frequencies and
amplitude are measured. Also, the reflection coefficient of
the upstream and the three downstream boundary conditions
are known. They are used to calculate the feedback term F .
The acoustic gain G of the orifice is calculated from the ori-
fice impedance obtained in subsection 4.2.

5.2 Whistling frequency and instability frequency

Figure 4 presents the evolution of the whistling frequency
with the flow velocity for one of the three cases introduced in
subsection 5.1. It is first observed that whistling frequencies
are locked on successive acoustic modes, in a manner similar
to unstable grazing flows above cavities [16, 5, 7].

In figure 4, two ranges of frequency around 1500 Hz and
2100 Hz are observed for velocities below and above 8 ms−1,
respectively. The frequency step is the signature of the shift
from one acoustic mode to another when the flow velocity is

increased. The whistling frequency corresponds to an acous-
tic mode of the orifice and of the surrounding pipe. Defining
the Strouhal number S t = f t/Uhole, with t the orifice thick-
ness and Uhole the flow velocity in the orifice, the whistling
frequencies lie in the range 0.2 — 0.4, consistent with the
acoustic amplification range in figure 2. More precisely, the
first acoustic mode in figure 4 is associated to a Strouhal
number varying from 0.32 to 0.27, and the second acoustic
mode is associated to a Strouhal number varying from 0.32 to
0.23. For each range of frequency, the full range of Strouhal
numbers prone to whistling is covered as the flow velocity
increases.

The gray triangles of figure 4 label the unstable frequen-
cies derived from the linear stability analysis given in section
3.3. The unstable frequencies predicted by the linear analy-
sis fairly agree with the measured whistling frequencies. For
practical purposes, it can be assessed that self-sustained os-
cillations occur at a frequency such that the product GF is a
real number, with a value higher than unity. Whistling can
hence appear if the feedback term F has a modulus typi-
cally higher than 0.5, and if the frequency corresponds to a
Strouhal number in the range 0.2 — 0.4.

Even if the unstable frequencies and the whistling fre-
quencies are very close, it must be kept in mind that they are
different as the whistling frequencies result from nonlinear
saturation phenomenon, as described in subsection 3.4. The
results obtained here show however that these two frequen-
cies are very close so that further work is needed to study
there differences.

5.3 Whistling amplitude

In this last subsection, we focus on the evolution of the
whistling amplitude with the acoustic feedback term F and
the Strouhal number. For this paper, we study only whistling
occurring on a single acoustic mode, particularly the one
around 2100 Hz in figure 4. As a reminding, three arrange-
ments are studied, having similar phase conditions and hav-
ing decreasing modulus of the downstream reflection condi-
tion. The modulus of this reflection coefficient varies from
0.5 to 0.8, so that the acoustic modes of the system are only
slightly altered between each arrangement.

As presented in figure 5, the dimensionless acoustic ve-
locity varies from 1% to about 15% and the amplitude of
whistling is dependant on both the modulus of the acoustic
feedback F and the Strouhal number. This amplitude in-
creases with the feedback modulus (see figure 5b), and it ex-
hibits a maximum for a Strouhal number of the order of 0.25
(see figure 5a). This value of 0.25 correspond to the value
which makes the linear gain maximum, or the real part of
the acoustic impedance minimum (see figure 2). Moreover,
the comparison of the three curves of figure 5a indicates a
variation of the Strouhal number associated to the maximum
amplitude with the feedback modulus. This point needs more
data to be investigated.

6 Conclusion

The present paper has shown how incompressible tools
are able to capture the acoustical behavior of an orifice in the
case of low Mach number.

First, using an URANS approach, incompressible simu-
lations of a pipe flow impinging an orifice with superimposed
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Figure 5: Evolution of the dimensionless whistling
amplitude with the Strouhal number, (a), and with the
modulus of F , (b), for one single mode. The dark gray
squares correspond to the case with the most reflecting

downstream condition, the light gray to the intermediate one
and the white squares to the less reflecting one.

harmonic velocity fluctuations have been used to extract an
impedance term Z in the frequency range 500-4000 Hz. A
comparison of this impedance to experimental results show a
good agreement. From the real part of Z, it is moreover possi-
ble to define the whistling ability of an orifice and the method
presented here predicted accurately the potential whistling
frequency range.

Then, studying the whole system as a closed loop com-
posed of an nonlinear acoustic gain and a linear acoustic
feedback has allowed to characterize the evolution of the
whistling frequency and amplitude. On one hand, a linear
stability analysis predicts accurately the whistling frequency
of the system. On the other hand, the analysis of whistling
amplitude shows that the whistling amplitude increases with
the acoustic feedback of the system and that it is maximum
for a Strouhal number around 0.25.
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A Hirschberg. Aeroacoustic response of a slit-shaped
diaphragm in a pipe at low Helmholtz number, 2: un-
steady results. J. Sound Vib., 244(1):37–77, 2001.

[9] P Moussou, P Testud, Y Aurégan, and A Hirschberg.
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