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Ultrasonic Resonance Spectroscopy allows the characterisation of piezoelectric materials thanks to the study of 
their mechanical and electrical resonances. In this context, the present work deals with the modelling of the 
electrical admittance of parallelepiped shaped piezoelectric samples. First, the natural mechanical and electrical 
resonant frequencies of a piezoelectric cube are calculated from the stationary points of the Lagrangian of the 
system. Then its electrical resonances are identified taking into account the short circuit electrical boundary 
conditions and the electrical admittance is determined as a function of frequency from calculations of the charge 
quantity on both electrodes of the cube. Measurements are carried out on a PMN-34.5PT ceramic cube. 
According to the properties determined by mechanical velocity measurements, the cube presents a first 
resonance around 125 kHz. Experimental admittance curves are compared with success to the electrical 
modelling of the cube vibrations. 

1 Introduction 
Several models of one-dimensional vibrations of a 

piezoelectric material can be found in the literature, such as 
Mason’s and KLM, which can predict the 
electromechanical behaviour of a piezoelectric plate. These 
methods are not applicable to 3D specimens such as a cube. 
Until now, conventional techniques use several samples to 
identify the material parameters [1]. Recently, Delaunay et 
al. proposed an ultrasonic characterization method allowing 
the determination of these properties using a single sample. 
This method, referred to as Resonant Ultrasound 
Spectroscopy [2], examines the vibration modes of a 
piezoelectric cube and relates mechanical resonances 
measured by Laser interferometry to electromechanical 
properties. This method is here modified to obtain the 
electromechanical properties of a metallized sample from 
the study of its electrical admittance and optical 
measurements. At first, the eigenfrequencies of a 
piezoelectric cube with electrodes on two faces will be 
calculated. Secondly, its electrical admittance will be 
modelled. This admittance will be compared to the 
experimental results. Finally, the validity of the model will 
be discussed. 

2 Eigenfrequencies of a piezoelectric 
cube 

2.1 Calculation of the stationary points 
The calculation of the stationary points of a system 

implies the minimization of its Lagrangian expression: 
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where Ec is the kinectic energy, Edef is the deformation 
energy, Ep is the potential energy and Ee is the electrostatic 
energy. 

Here, a piezoelectric cube is considered, as shown in 
figure 1. 

Figure 1: Piezoelectric parallelepiped  with dimensions 
A, B and C (here A = B = C = 10 mm) and  poled along x3. 

The origin of the axis is taken at the centre of the 
piezoelectric sample such as L1=A/2, L2=B/2 and L3=C/2 

where A, B and C are the edges’ lengths of the 
parallelepiped. There are two electrodes on the faces x3=L3

and x3=-L3. The general Lagrangian can be expressed as [4, 
5]  
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The summation on indices runs from 1 to 3, corresponding 
to the three directions in the coordinate space. 

To minimize the Lagrangian (and hence find the 
equilibrium configuration of the system), the Rayleigh-Ritz 
method is used. The displacements and electrical potential 
are then expressed as a linear combination of the trial 
functions: 
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The Np ...1p )( =ψ  and Mrr ...1)( =ϕ  functions are chosen 
to be orthonormal [2]. 

If these relations are injected in equation (2) the 
Lagrangian becomes:  

[ ]

[ ]∑ ∑

∑ ∑
∑ ∑

−Λ−

−Ω+

−Γ=

r r rrrrrr

p r rprprp

p p pppppp

Baa

Aba

aaL

  '  '  '  ' 

        

  '  '  
2 

'  ' 

)(
2

1
      

)(      

)(
2

1 δωρ

        (4) 

where, 
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Γ , Ω  and Λ  are the elastic, piezoelectric and 
dielectric interaction matrices respectively. Apr and Brr’ are 
the contributions of the work of the electrostatic forces. 
Coefficients ap and br are obtained by calculating the 

stationary points of the Lagrangian (i.e. L∂ =0). This yields 
the following eigenvalue system: 
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The eigenvectors of this equation system give the 
coefficients of the expansion of the displacements and  
electrical functions of the sample in terms of the basis 
functions. The eigenvalues are linked to the resonance 
frequencies. 

2.2 Basis trial functions 
To apply this technique, one should chose basis 

functions for the particle displacements and electrical 
potential that match the configuration of our system. The 
displacement trial functions must satisfy: 
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The electric potential trial functions must correspond to 
the short circuit or zero potential boundary condition on the 
electrodes. Although this is not a necessary condition, it 
increases the computation convergence and simplifies the 
calculation of the interaction matrices. The chosen basis 
functions of displacement and electrical potential are 
respectively:  
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triplets, ( )υμλ ,, and ( )ηςξ ,, , respectively. Pα(x) is the 
normalized Legendre function of order α and ei is the unit 

displacement vector in xi direction, 
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LLL is a 

normalization term [2, 4, 5]. 

2.3 Simulation results 

Table 1 shows the first thirty ordered resonance 
frequencies of a 10*10*10 mm3 PMN-34.5PT piezoelectric 
cube calculated using the previous model. The elastic, 
piezoelectric and dielectric constants were taken from [2]. 
They are C11=174.7, C12=116.6, C13=119.3, C33=154.8, 
C44=26.7, C66=29 in GPa; e15=17,1, e31=-6.92, e33=27.3 in 
C/m²; ε1=21.0105, ε3=25.0125 in pF/m. 

The six first resonance frequencies correspond to the 
static modes (three rotations and three translations). In a 
free system all these six frequencies are null but here the 
boundary conditions in direction x3 are different. Some 

frequencies are degenerated. They represent the same mode 
with a rotation of 90° around the polarisation axis x3. These 
eigen-frequencies correspond to both mechanical and 
electrical resonances. Next, one needs to determine which 
frequencies among these are piezoelectrically coupled. 

Table 1: The computed eigenfrequencies 

Frequencies in Hz 
0          0              0           0   23282          23282 

86616     87522    103377   103377    113423    116738 
120113    122297    124643   124643    132688    134243 
141163    141163    153051    156508   156508    156561 
159303      160884    160884    165250    165250    166979 

2.4 Calculation of electrical admittance 
To compute the electrical admittance, Qp is defined as the 
free charge on electrode p: 
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To calculate the admittance matrix formulas, it is necessary  
to express the current: 
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Differentiation of the current with the electric potential 
gives the electrical admittance matrix expressed as [4]. 
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where i is the number of the mode and SC  is the clamped 
capacitance given by:  

32133 2 LLLC SS ε= .                                              (13)

2.5 Simulation of the electrical 
admittance: 
In this paragraph, data from section 2.3 and the previously 
computed eigen-frequencies are used. To compute the 
admittance, the particle displacement and the electric 
potential are calculated. Figure 2 shows the modulus of the 
admittance obtained with this technique. 

Fig. 2: Computed modulus of the electrical admittance of 
the PMN34.5PT cube. 
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There are five electrical resonances, meaning that in this 
domain only five modes are piezoelectrically coupled. 
Table 2 shows these sorted frequencies. 

Table 2: Computed frequencies of piezoelectrically-
coupled resonance modes 

Frequencies in Hz 
113400      153100      221800      225300     252500 

  

3 Experimental Results 

Fig. 3: Experimental set-up 

The experimental set-up used to measure the admittance 
of the PMN34.5PT cube is presented in figure 3. Results 
are presented in figure 4.   

Fig. 4: Measured electrical admittance of  PMN34.5PT 
cube 

One can observe five resonances in the admittance 
curve, the frequencies of which are given in table 3. 

Table 3: The measured frequencies of piezoelectrically 
coupled modes 

Electrical resonance frequencies in Hz 
126900      177500       239400       244600       260800 

4 Comparisons and discussions 
Theoretical and experimental resonance frequencies 

differ of approximately 10%. These discrepancies can result 
from the fact that the model does not take into account the 
viscoelastic behaviour of the material while the 
experimental resonances presented in figure 4 are clearly 
affected in amplitude and quality. A second reason can be 
that the constants used in the simulations do not exactly 
correspond to the electromechanical properties of our 
PMN34.5PT sample. 

To test this hypothesis, let’s evaluate the effect of a 
change of some functional properties on the admittance 
curves and its resonance frequencies. If the C13 constant is 
reduced by 5%, the curve of figure 5 is obtained and the 
new resonance frequencies are shown in table 4 reveal the 
high dependence of the resonance frequencies to the C13

characteristic 
. 

Fig. 5: Computed modulus of the electrical admittance 
of PMN34.5PT cube. 

Like previously we have five frequencies   
piezoelectrically coupled.  

Table 4: The computed frequencies of piezoelectricaly 
coupled modes using the modified properties. 

Electric Resonance Frequencies in Hz 
123400      163200        228900      231700      254600 

A sensitivity study of the resonance frequencies to the 
input parameters is then performed. Table 5 shows the 
sensitivity to the elastics parameters of the resonance 
frequencies of piezoelectrically coupled mode. C13 is the 
coefficient with the biggest influence while C44 and C66

have no effect on the frequency of the first mode being a 
thickness mode. They also less influence the second mode 
than the others (see figure 6).  These results indicate that a 
good precision on the input elastics parameters is required 
to allow a accurate representation of the resonance 
spectrum.  
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Table 5: Sensitivity to the elastic constants of the 
computed resonance frequencies of piezoelectricaly 

coupled modes (in Hz/GPa) 

Mode C11 C33 C44 C66 C12 C13 

1 458 891 0 0 377 -1676 
2 630 891 75 69 292 -1693 
3 550 672 974 483 206 -1190 
4 2851 556 1423 828 -69 -1073 
5 904 168 300 1862 -703 -352 

To increase the confidence in our model, let's verify if 
the theoretical and experimental modes are in accordance. 
For this, the deformation of the face x3=L3 was measured 
using a Laser vibrometer (Polytech OFV-505). It allows the 
resonance frequencies to be detected and to identify the 
associated mode shapes. A voltage generator delivers an 
electrical excitation. It has a very large frequency 
bandwidth and the delivered electrical power is adjustable. 
The sample is set on a plastic holder and the electrical 
contact is ensured by a metallic strip fixed on a spring so 
that free mechanical boundary conditions at the surfaces of 
the cube are fulfilled [2]. The interferometer is positioned at 
50 cm from the sample. The velocity decoder sensitivity is 
respectively 5 mm/s/V and 25 mm/s/V, depending on the 
cut-off frequency, respectively 250 kHz and 1,5 MHz. The 
measured signals are sent to a computer via a digital 
oscilloscope. Figure 6 shows the theoretical and 
experimental displacements associated to the 
piezoellectrically coupled modes. 

N° 
mode 

Computed face 
deformation 

Measured face 
deformation 

1 

2 

3 

4 

5 

Fig. 6 : Computed and measured particle displacements 
of the five piezoelectrically coupled modes  

The theoretical and experimental aspects of particle 
displacements are in accordance for all five modes, 
validating the model. 

5 Conclusion 
In this paper we have studied the eigen-vibration modes 

of piezoelectric cubes. We have calculated the electrical 
admittance of the cube and shown that electrical boundary 
conditions strongly influence the piezoelectrically coupled 
modes. In the frequency bandwidth of the study, there is a 
good agreement between the theoretical and experimental 
particle displacements at the surface of the studied cube. 
However, resonance frequencies are not located exactly at 
the expected values due to their strong sensitivity to the 
material electromechanical parameters. In further studies, 
we will introduce electrical and mechanical loses in order to 
compute the amplitude of the admittance and quantify their 
influence on the resonances. Then, thanks to a sensitivity 
study, the inverse problem will be solved to identify the 
properties of the material. 
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