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Numerical reference models are necessary to validate engineering methods used for acoustical predictions in 
realistic situations. These situations include irregular geometries and characteristics that are not accurately 
known. This can be due to the complexity of the propagation medium, space and time variability of its physical 
properties, measurements uncertainties, etc. The objective of this work is to compute sound propagation through 
such a complex medium using a TLM numerical method. First examples of numerical studies dealing with 
irregular ground geometry and impedance properties are presented. 

 
1 Introduction 

Noise impact of industrial or transportation activities on 
the environment is predicted mainly using simplified 
engineering methods. In order to validate or to refine these 
methods, there is a need to compute numerical reference 
models for realistic situations encountered in outdoor sound 
propagation. They include irregularities due to the 
complexity of the propagation medium, time variability of 
the medium properties and measurements uncertainties. The 
effects of these irregularities and uncertainties on the sound 
pressure levels (or other noise indicators) have been studied 
in a statistical way in previous works ([1] and [2], [3] and 
[4], [5]). Time domain numerical models can be useful to 
predict these effects because of their ability to take into 
account both space and time fluctuations of the propagation 
medium, as well as transient phenomena. 

The objective of this paper is to present a first study on 
the effect of such irregularities and uncertainties on ground 
geometry and impedance characteristics on the sound 
pressure levels (SPL). This is achieved using a 
Transmission Line Matrix (TLM) method developed at 
Ifsttar [6][7]. 

First, the principles of the TLM method and the 
impedance model implemented in the code are presented. 
Secondly, the computations and their results are exposed. 

2 Transmission Line Matrix Model 

2.1 Principles of the TLM model 
TLM method was first applied to electromagnetism in 

the 70’s. It is based on a discretization of Huygens’ 
principle, which states that a wavefront can be split in a set 
of secondary sources radiating spherical wavelets of the 
same amplitude, phase and frequency. The secondary 
sources are considered as nodes and the energy is 
transmitted between these nodes by transmission lines. The 
discrete propagation medium is a cartesian grid with 
constant step Δx in all the space directions, modelling a 
network of transmission lines linking nodes together. The 
acoustic field evolution is described by means of sound 
pulses. For a homogeneous and non-dissipative 2D 
medium, at each time iteration and at each node, we 
consider four incident pulses In arriving at the node and 
four scattered pulses Sn leaving the node (Figure 1). At a 
given time t, the scattered and incident pulses at a node are 
linked by the matrix relation [8]: 

 ),(),(),( jitjitjit IDS ⋅=  (1) 

 

Figure 1: Incident and scattered pressure pulses at a node. 

where: 
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Sound field diffusion and time-stepping is performed by 
considering that the incident pulse I2 received by a node 
(i,j) at time t+Δt is equal to the scattered pulse S1 emitted 
by the neighbour node (i+1,j) at time t (Figure 2). 

 

 

Figure 2: Connection between two nodes. 

By doing so in all directions come the following 
connection laws: 
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Finally, the acoustical pressure at a node is expressed as 
a combination of the incident pressure pulses: 
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Propagation through more complex media (such as 
inhomogeneous and dissipative ones) is modelized by 
adding branches to a node. This modifies the scattering 
matrix D in Eq. (1) and introduces new connection laws for 
these additional branches [9]. 

2.2 Sound speed in the TLM network and 
conditions on spatial and time steps 

The sound speed in the TLM network cTLM is lower than 
the real sound speed in the medium c and equal to [8]: 

 
td

x
d
ccTLM Δ

Δ
==  (10) 

with d the dimension of the problem. This leads to a 
numerical condition on the time step to ensure a celerity c0 
in the simulations (cTLM=c0): 
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Furthermore, in order to limit the numerical dispersion, 
the spatial step must fulfil the following condition: 

 10/minλ≤Δx  (12) 

with λmin the minimal wavelength of the source signal. 

3 Time domain impedance boundary 
condition in the TLM code 

In the frequency domain, the impedance condition at an 
absorbing boundary is given by: 

 )()()( ωωω nVZP =  (13) 

where P(ω) and Vn(ω) are respectively the Fourier 
transforms of the acoustical pressure and normal velocity at 
the boundary, and Z(ω) the impedance of the surface. There 
are several impedance models which take into account 
different parameters of the ground (air flow resistivity, 
porosity, thickness, etc.) [10]. 

In the time domain, this condition becomes a 
convolution product: 
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 In order to implement this condition in time-domain 
numerical models, an efficient recursive convolution 
method can be used if the impedance model is 
approximated by a sum of first-order systems of the form 
[8][10]: 
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The Miki semi-empirical model [8] is implemented in 
the TLM code. It is a one parameter model taking into 
account only the air flow resistivity σ of the ground. It 
fulfils the causality condition needed for an impedance 
model to be used in the time domain. The Miki model can 
be written as follows: 
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where a=5.50 and b=-0.632 are Miki’s model 
parameters.  

This model is next approximated by the following 
expression [8]: 
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where Γ is the Gamma function. 
For a given absorbing ground with an air flow resistivity 

σ, a set of K=6 coefficients ak and λk are estimated in order 
to approximate Eq. (16) with (18), using an ε-constraint 
optimisation method as proposed by Cotté & al. (fmincon 
function in Matlab®) [10]. 

4 Effect of ground geometry 
uncertainties on SPL 

4.1 Simulations 
In this section, the effects of the ground geometry 

uncertainties on sound pressure levels are studied with two 
dimensional TLM computations. 

A source and a microphone are located respectively at 
heights Hs=2m and Hr=2m above the ground and separated 
by a distance xr=50m. The physical duration is 0.16 s. The 
spatial step is Δx=0.025m. The time step is given by (10) 
and is Δt=5.14.10-5s. 

According to (12) the upper validity limit in frequency 
for this configuration is 1300Hz. Moreover, the limited size 
of the absorbing layers for the non-reflective boundaries 
induces a lower limit of 100Hz.  

The ground air flow resistivity has a constant value of 
σ=150kN.s.m-4 (which correspond to a grassy ground). A 
set of coefficients ak and λk are calculated for this value of σ 

Proceedings of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France

3251



as described in section 3. Uncertainties of ±10cm on the 
ground profile are considered by drawing random values of 
ground height each 50 cm, with a normal distribution of 
zero mean and  a standard deviation sh=0.1m. 

Fifteen simulations are carried out with random 
realizations of the ground profile. The signal emitted by the 
source is a Gaussian pulse of the form: 

 [ ]2
max

2 )1(exp)( −−= tfAts π  (19) 

where A is the amplitude of the pulse and fmax the upper 
validity limit in frequency defined above. 

Computation time for one simulation is about twenty 
minutes on four processors. Figure 3 shows an example of 
one simulation with a random drawing of ground profile. 

 

 

Figure 3: Propagation over a random ground geometry 
(source: red dot; microphone: blue dot). 

4.2 Results 
For each simulation, the sound pressure spectrum PM(ω) 

at the microphone is obtained by Fourier transform of the 
time signal. The sound pressure level relative to free field 
(or excess attenuation spectrum) is then obtained as: 
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where Pfree field(ω) is the free field sound pressure 
spectrum computed using the same parameters and a 
configuration with no ground. Figure 4 shows the excess 
attenuation spectra obtained for all the simulations. The 
results present a large dispersion. Moreover, from one 
realization of ground profile to another the sound pressure 
level may vary strongly. One also can note the additional 
oscillating behaviour due to the random profiles. 

 

Figure 4: Excess attenuation spectra for 15 simulations with 
different random ground height profile (zero mean, 
sh=0.1m).  Hs=Hr=2m, xr=50 m, σ=150 kN.s.m-4. 

On Figure 5, the mean value of the fifteen simulations is 
compared to the excess attenuation spectrum computed for 
the case of a homogeneous flat ground (σ=150kN.s.m-4). 
This mean value has a ground dip lower both in amplitude 
and frequency, as if the propagation would have been 
considered above a more absorbing flat ground with a lower 
air flow resistivity. This result is physically coherent as the 
ground irregularities induce backscattering of the sound 
energy. 

The uncertainties on the ground profile introduced in the 
simulations have then an important effect on the sound 
pressure level (differences up to 10 dB with the 
homogeneous case). 

 

 

Figure 5: Mean value and standard deviation of the results 
of Figure 4 (black and dashed curves) compared to the 

excess attenuation spectrum in the case of a homogeneous 
flat ground (red curve). Hs=Hr=2m, xr=50m, 

σ=150kN.s.m-4. 

An effective air flow resistivity is estimated for this 
mean value by fitting an analytical solution of propagation 
above a flat absorbing ground [12] with the same 
configuration for the source and the receiver (Figure 6). In 
this analytical solution, the impedance is also expressed 
with the Miki model (Eq. (16)). The two curves fit for 
σ=85kN.s.m-4 in the analytical solution, while the actual air 
flow resistivity of the ground in the simulations is 
σ=150kN.s.m-4. 

 

 

Figure 6: Fitting between the mean value of the 
computation results (black curve) and an analytical solution 

of propagation above a flat ground with Hs=Hr=2m, 
xr=50m, σ=85kN.s.m-4 (red curve). 
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This result can be used in the experimental field and 
applied to the case of ground impedance measurements 
which consider a perfectly flat ground. As a real ground 
cannot be regarded as a pure flat ground, a significant 
underestimation of the air flow resistivity can occur. 

5 Effect of ground impedance 
uncertainties on SPL 

5.1 Simulations 
In this section, the effects of ground impedance 

uncertainties are studied. The configuration is the same as 
in section 4.1, except for the ground which is perfectly flat.  

From impedance measurement campaigns, it is known 
that experimental uncertainties on the air flow resistivity 
around 150kN.s.m-4 are about ±20kN.s.m-4 [11]. Fifty 
values of σ are drawn with a normal distribution of mean 
value -4kN.s.m150=σ  and standard deviation  
sσ=20kN.s.m-4; they are allocated to 50 one meter long 
ground strips along the propagation path as shown on 
Figure 7.  

 

Figure 7: Example of random air flow resistivity drawing 
with 150=σ  kN.s.m-4 and sσ=20 kN.s.m-4. σ is constant on 

each one meter long ground strip. 

Coefficients ak and λk are calculated for all of these 
values of σ as described in section 3. Fifteen simulations are 
carried out. For each one the fifty strips are randomly 
reorganized. Computation time for one simulation is about 
twenty minutes on four processors. 

5.2 Results 
The excess attenuation spectra are obtained for each 

simulation as described in Section 4.2. They are presented 
in Figure 8. From one realization of ground impedance to 
another, the variation of the sound pressure level is very 
low and there is a small dispersion between the results. 

In Figure 9, the mean value of the simulations is 
compared to the excess attenuation spectrum computed for 
the case of a homogeneous ground (σ=150kN.s.m-4). The 
mean value is very close to the homogeneous case. This 
shows that the uncertainties on the ground impedance 
introduced in the simulations do not have a significant 
influence on the sound pressure level at such distances 
(50m from the sound source), which agrees with Ostachev’s 
recent results [5]. 

 

Figure 8: Excess attenuation spectra for fifteen simulations 
with different random ground impedance profile (zero 
mean, sh=0.1m).  Hs=Hr=2m, xr=50m, σ=150kN.s.m-4. 

 

Figure 9: Mean value and standard deviation of the results 
of Figure 8 (black and dashed curves) compared to the 

excess attenuation spectrum in the case of a homogeneous 
ground (red curve). Hs=Hr=2m, xr=50m, σ=150kN.s.m-4. 

6 Conclusion 
A first study on the influence of geometrical and ground 

parameters uncertainties on the prediction of sound levels 
has been done. The uncertainties values were considered 
with a range of order issued from the experimental 
background.  

It appears that considering a nearly flat ground by 
introducing a realistic random ground profile leads to a 
significant increase of the apparent ground absorption. This 
result shall be confirmed soon using a curvilinear meshing 
FDTD code named Code_Safari and developed at EDF 
R&D which allows the grids to adjust to realistic 
boundaries.  

The sensitivity of the TLM predictions to uncertainties 
in the air flow resistivity did not reveal any important effect 
on both the average and the dispersion of the predicted 
sound pressure levels. In that case the uncertainties were 
taken at the range of order of experimental uncertainties on 
a homogeneous ground. A next step could be to consider a 
bigger dispersion to take into account a realistic space and 
time variability of the ground properties. This will be tested 
in further works, especially using the experimental results 
issued from the Ifsttar Long Term Monitoring Site (LTMS) 
of Saint-Berthevin [13]. 
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